

3

2 **REQUEST FOR PROPOSAL**
3 **I-405, Brickyard to SR 527 Improvement Project**

Bridges and Structures

4 **2.13 Bridges and Structures**

5 **2.13.1 General**

6 The Design-Builder shall perform all Work necessary to complete the bridges and
7 structures for the Project to satisfy the Basic Configuration requirements.

8 Elements of Work shall include the following:

- 9 • Bridge Removals:
 - 10 ○ Bridge No. 405/70N-E (northbound I-405 to eastbound SR 522)
 - 11 ○ Bridge No. 405/70N-W (northbound I-405 to westbound SR 522)
 - 12 ○ Bridge No. 522/30E-N (eastbound SR 522 to northbound I-405)
- 13 • New Bridges:
 - 14 ○ Pedestrian bridge over I-405 at Brickyard BRT Station
 - 15 ○ I-405 direct access bridge at SR 522
 - 16 ○ Northbound I-405 over Sammamish River and SR 522
 - 17 ○ Northbound I-405 off ramp to SR 522
 - 18 ○ 17th Avenue SE direct access bridge over northbound I-405 at SR
19 527 BRT Station
 - 20 ○ Fish Passage structures as listed in Section 2.30, *Water Crossings*
- 21 • Bridge Replacements:
 - 22 ○ Bridge No. 405/104P (pedestrian bridge over northbound and
23 southbound I-405 to SR 527 BRT Station)
- 24 • Bridge Modifications:
 - 25 ○ Bridge No. 522/28N (westbound SR 522 over North Creek) to add
26 pedestrian pathway and incorporate requirements in Section 2.15,
27 *Roadside Restoration, and Transit Facilities Architectural and*
28 *Urban Design Criteria* (Appendix S)
 - 29 ○ Bridge No. 405/70E (northbound I-405 over Sammamish River/SR
30 522, due to removal of existing Bridge No. 522/30E-N)
- 31 • Bridge Widenings and Seismic Retrofits:
 - 32 ○ Bridge No. 405/103E (northbound I-405 over 228th Street SE)
- 33 • Bridge Seismic Retrofits:
 - 34 ○ Bridge No. 405/64 (NE 160th Street over I-405)
 - 35 ○ Bridge No. 405/73 (NE 195th Street over I-405)
 - 36 ○ Bridge No. 405/103W (southbound I-405 over 228th Street SE)
- 37 • Bridge Joint Rehabilitations:

- 1 ○ Bridge No. 405/70W and 405/70E (southbound and northbound
2 I-405 over Sammamish River/SR 522)
- 3 ○ Bridge No. 405/70S-E (southbound I-405 to eastbound SR 522)
- 4 ○ Bridge No. 405/103W and 405/103E (southbound and northbound
5 I-405 over 228th Street SE)
- 6 ○ Bridge No. 522/28N (westbound SR 522 over North Creek)
- 7 ● Bridge Deck Repair and Sealing:
 - 8 ○ Bridge No. 405/70W and 405/70E (southbound and northbound
9 I-405 over Sammamish River/SR 522)
 - 10 ○ Bridge No. 405/70S-E (southbound I-405 to eastbound SR 522)
- 11 ● Bridge Deck Overlay Replacement:
 - 12 ○ Bridge No. 405/103W and 405/103E (southbound and northbound
13 I-405 over 228th Street SE)
 - 14 ○ Bridge No. 405/72 (northbound and southbound I-405 over North
15 Creek)
- 16 ● Permanent and temporary retaining walls, moment slabs, buried
17 structures, noise walls, traffic barriers, sign structures, toll structures,
18 lighting structures, detention vaults, and stormwater vaults.

19 The plans showing the existing bridges and other structures are located in the *As
20 Built* (Appendix N). The plans are not guaranteed to be dimensionally accurate
21 or complete. The Design-Builder shall field measure and verify existing
22 dimensions as required for their Work.

23 **2.13.1.1 Forward Compatibility**

24 The Design Builder shall illustrate the Forward Compatible concept in design
25 drawings in plan, section, and elevation. Design calculations shall include design
26 and analysis of the Forward Compatible concept. Forward Compatible walls shall
27 be designed for the current and Forward Compatible conditions and shall satisfy
28 global stability for both conditions. Structure layouts shall dimension clear zones
29 and locations of Forward Compatible elements.

30 All new bridge widenings, modifications, and retrofits shall be designed and
31 constructed so they are Forward Compatible with the Forward Compatible Plans
32 (Appendix M), except Bridge No. 405/104P (pedestrian access over northbound
33 and southbound I-405 to the Canyon Park BRT Station) which shall be Forward
34 Compatible with the Interim Forward Compatible Plans (Appendix M).

35 All new retaining walls and noise walls shall be designed and constructed so they
36 are Forward Compatible with the Forward Compatible Plans, except the
37 following:

- 38 ● Wall 22.35R
- 39 ● Wall 22.49L
- 40 ● Wall 22.82L

- 1 • Wall 23.02L
- 2 • Wall 23.15L
- 3 • Wall 23.32L
- 4 • Wall 23.54R
- 5 • Wall 23.72R
- 6 • Wall 23.80R
- 7 • Wall 24.83R
- 8 • Wall 26.02R
- 9 • Wall 26.11R
- 10 • Wall 26.34R
- 11 • Wall 26.74L
- 12 • Wall L1

13 The following new retaining walls and noise walls shall be designed and
14 constructed so they are Forward Compatible with the Interim Forward Compatible
15 Plans:

- 16 • Noise wall NW6
- 17 • Noise wall NW7

18 Future construction of an additional lane on northbound I-405 will require
19 excavation at the face of Wall 23.28R to a future ground line. Wall 23.28R shall
20 be designed for the Forward Compatible condition without demolition as an
21 element of the widening shown in the Forward Compatible Plans.

22 Stormwater treatment vaults shall be designed and constructed so they are
23 Forward Compatible, except the following:

- 24 • Detention vault along southbound I-405, near MP 26.45

25 Fish passage structures shall be Forward Compatible as described in Section 2.30,
26 *Water Crossings*.

27 The Design-Builder shall include in the design, structural concept and analysis
28 demonstrating Forward Compatibility requirements.

29 **2.13.2 *Mandatory Standards***

30 The following is a list of Mandatory Standards that shall be followed for all
31 design and construction related to this Section as referenced in Section 2.2,
32 *Mandatory Standards*.

- 33 1. Special Provisions (Appendix B)
- 34 2. Standard Specifications M 41-10 (Appendix B)
- 35 3. WSDOT *Bridge & Structures Office Design Memoranda* (Appendix B)
- 36 4. WSDOT *Bridge Design Manual LRFD* M 23-50 (Appendix D)

- 1 5. *WSDOT Geotechnical Design Manual M 46-03 (Appendix D)*
- 2 6. *Sound Transit Design Criteria Manual (Appendix S)*
- 3 7. *AASHTO Guide Specifications for LRFD Seismic Bridge Design*
- 4 8. *FHWA Seismic Retrofitting Manual for Highway Structures: Part 1 - Bridges*
- 5 9. *AASHTO LRFD Bridge Design Specifications*
- 6 10. *AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges*
- 7 11. *FHWA Evaluating Scour at Bridges, HEC-18*
- 8 12. *AASHTO Manual for Bridge Evaluation*
- 9 13. *WSDOT Design Manual M 22-01 (Appendix D)*
- 10 14. *WSDOT Plans Preparation Manual M 22-31 (Appendix D)*
- 11 15. *WSDOT Construction Manual M 41-01 (Appendix D)*
- 12 16. *AASHTO LRFD Bridge Construction Specifications*
- 13 17. *AASHTO Guide Design Specifications for Bridge Temporary Works*
- 14 18. *WSDOT Materials Manual M 46-01 (Appendix D)*
- 15 19. *Standard Plans M 21-01 (Appendix D)*
- 16 20. *Qualified Products List (QPL)*
<https://wsdot.wa.gov/engineering-standards/construction-materials/qualified-product-list-qpl>
- 17 21. *AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals*
- 18 22. *AWS Structural Welding Code - Steel (AWS D1.1/D1.1M)*
- 19 23. *AWS Structural Welding Code - Reinforcing Steel (AWS D1.4/D1.4M)*
- 20 24. *AASHTO/AWS Bridge Welding Code (AWS D1.5M/D1.5)*
- 21 25. *American Concrete Institute Code Requirements for Environmental Engineering Concrete Structures (ACI 350)*
- 22 26. *AASHTO LRFD Road Tunnel Design and Construction Guide Specifications*
- 23 27. *International Building Code (IBC) with local amendments*
- 24 28. *AASHTO LRFD Guide Specifications for Accelerated Bridge Construction*
- 25 29. *AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members*
- 26 30. *ASCE Pre-Standard for LRFD of Pultruded FRP Structures*
- 27 31. *National Cooperative Highway Research Program (NCHRP) Guidelines and Recommended Standards for Geofoam Applications in Highway Embankments (NCHRP Report 529)*

1 32. *AREMA Manual for Railroad Grade Separation Projects*
2 33. *AREMA Manual for Railway Engineering*
3 34. City of Bothell Municipal Code Chapter 20.04, Building Regulations and
4 International Codes

5 Design shall comply with the codes and standards of the jurisdiction in which the
6 structure resides. The codes and standards of the Authority Having Jurisdiction
7 (AHJ) shall govern design to the greatest extent required by law and good
8 engineering practice. The Engineer of Record shall address any conflicts as part
9 of a Basis of Design and submit to WSDOT for Review and Comment.

10 Combined building and bridge structures or building and roadside structures shall
11 be analyzed for *AASHTO LRFD Bridge Design Specifications*, the Mandatory
12 Standards, and the *International Building Code* and be designed for the most
13 stringent forces, deformations, and requirements. Pedestrian bridges shall be
14 governed by these Mandatory Standards and design requirements of the AHJ and
15 be designed for the most stringent.

16 **2.13.2.1 Bridge Design Manual Rights and Responsibilities**

17 The WSDOT *Bridge Design Manual*, as modified by the WSDOT *Bridge &*
18 *Structures Office Design Memoranda*, allocates responsibilities as follows:

- 19 • Rights and Responsibilities - The following clarifies which rights and
20 responsibilities discussed in the WSDOT *Bridge Design Manual* are
21 applicable to the Design-Builder:
 - 22 ○ The Design-Builder shall complete all analyses, evaluations, load
23 ratings, Plans, and specifications discussed in the WSDOT *Bridge*
24 *Design Manual*. All Chapters of the WSDOT *Bridge Design Manual*
25 shall be followed as a part of the Mandatory Standard.
 - 26 ○ All analyses, evaluations, load ratings, Plans, and specifications are
27 subject to Review and Comment by WSDOT.
 - 28 ○ All references to WSDOT Sections, offices, and engineers shall
29 mean WSDOT.
- 30 • Where the WSDOT *Bridge Design Manual* or the WSDOT *Bridge &*
31 *Structures Office Design Memoranda* requires approval, the
32 Design-Builder shall be responsible for obtaining approval from the
33 WSDOT Engineer prior to proceeding with the design.

34 **2.13.3 Personnel Requirements**

35 The Design-Builder shall provide a Structural Lead Engineer (SLE) to manage,
36 coordinate, and review all aspects of the structural Work completed for the
37 Project. The SLE shall provide written certification that the design and
38 construction of all permanent and temporary Work is in conformance with the
39 Contract requirements and the Quality Management Plan for each structural
40 drawing, calculation package, temporary structure package, working drawings,
41 and design revision during construction.

1 The SLE shall have a minimum of 10 years of experience in the design of bridges,
2 retaining walls, shoring and temporary walls underpinning bridges, and other
3 highway related structures. This individual shall be a Structural Engineer.

4 The Engineer of Record (EOR) for all structural engineering Design Documents
5 for significant structures described in RCW 18.43.020(12) and for all bridges
6 shall have a minimum of 10 years of experience in the design of bridges, retaining
7 walls, and other highway related structures. The EOR shall be a Structural
8 Engineer.

9 The EOR for all structural engineering Design Documents for all other structures
10 in the Project shall be a Professional Engineer or Structural Engineer.

11 The Design-Builder shall designate a Structural Engineer, geotechnical engineer,
12 and lead field engineer to design, manage, and review all aspects of Work for
13 installation of walls and shoring under existing bridges and structures, such as
14 Work under Bridge No. 405/103E. They shall have completed at least five similar
15 wall and shoring projects under existing bridges, within the last 10 years. The
16 Design-Builder shall submit documentation demonstrating minimum
17 qualifications for Review and Comment.

18 **2.13.4 *Design Criteria***

19 The Design-Builder shall analyze and design all new permanent bridges and
20 structures, and all existing or modified structural elements whose structure or
21 load-carrying capacities or demands are altered by the Work, using Load and
22 Resistance Factor Design (LRFD) as defined in the WSDOT *Bridge Design*
23 *Manual* and the AASHTO *LRFD Bridge Design Specifications*.

24 The Design-Builder shall design and construct permanent bridges and structures
25 to achieve a minimum design life of 75 years.

26 Minimum clearances shall be as follows and shall be maintained at all times
27 during and after construction:

- 28 • New vehicular structures over a roadway shall provide a minimum
29 vertical clearance of 16' - 6".
- 30 • New bike/pedestrian structures crossing a roadway shall provide a
31 minimum vertical clearance of 17' - 6". The vertical clearance from the
32 top of the walkway to overhead obstructions shall be a minimum of
33 9' - 0".
- 34 • New structures over the railroad adjacent to Woodinville Drive shall
35 provide a minimum vertical clearance of 23' - 6" measured to the top of
36 the rail, maintained over a minimum horizontal distance of 20'- 0" from
37 the center of track. If the top of rail elevation is unknown at the time of
38 construction, it shall be coordinated with King County and the WSDOT
39 Engineer.
- 40 • New overwater structures shall provide minimum clearances that meet
41 the following, except as modified for culverts in Section 2.30, *Water*
42 *Crossings*:

- 3 feet of freeboard above the 100-year Mean Recurrence Interval (MRI) water surface to the lowest point of the spanning member, unless otherwise stated.
- 6 feet above the thalweg taken perpendicular to the stream bearing to the bottom of the spanning member, unless otherwise stated.
- New structures over the Sammamish River shall provide a minimum navigational opening as required by the United States Coast Guard bridge permit (Appendix P).
- New deck overhang structures over a roadway shall provide a minimum vertical clearance of 17' - 6".
- New structures over Sammamish River Trail shall provide a minimum vertical clearance of 14' - 0" over the trail and associated buffers. A horizontal buffer of 10' - 0" shall be provided from each edge of the paved trail.
- New pedestrian bridge at Brickyard BRT Station shall have a minimum walkway width of 10' - 0". Vertical clearance from top of walkway to overhead obstructions shall be a minimum of 9' - 0".
- Pedestrian bridge (Bridge No. 405/104P) shall have a minimum walkway width to match the existing (10' - 7" minimum per the As Built drawings). Vertical clearance from top of walkway to overhead obstructions shall be a minimum of 9' - 0".
- For modified existing structures, the minimum vertical clearance shall not be less than the existing clearance.
- The new northbound I-405 over Sammamish River/SR 522 bridge north abutment shall be located no further south than the existing bridge north abutments for bridges 405/70E and 405/7W.
- Slopes in front of new bridge abutments or in front of retaining walls supporting bridge abutments shall provide a minimum of 13 feet of overhead clearance from top of slope to bottom of superstructures, except for the north abutment of the new northbound I-405 over Sammamish River and SR 522, and north abutment of the I-405 direct access bridge at SR 522.
- When multiple minimum clearances are listed, the required minimum vertical clearance shall be the greater value.

Minimum foundation cover requirements for scour shall be in accordance with the WSDOT *Bridge Design Manual*. Existing structure foundations including spread footings, pile caps, shaft caps (or bottom of seal if used), and wall elements (including fascia panels, lagging, leveling pads, and footings) affected by the Work shall meet the minimum foundation cover requirements or be protected against scour to that level.

Unless required elsewhere in the RFP, fall protection shall be provided at the top of all new structures, buried structures, retaining walls, and retaining wall terraces in accordance with Section 1060 of the WSDOT Design Manual. Fall protection

1 shall be a standard guardrail system (galvanized steel with black powder coated or
2 vinyl coating), as described and in accordance with the requirements in the
3 WAC 296-880-40005 and Appendix L. Fall protection shall have a top and
4 middle rail. Timber, extended wall parapet, and wire rope shall not be used as a
5 material type for standard guardrail. The Standard Plan Chain Link Fence Types 3
6 and 4, and Glare Screen Types 1 and 2 are not acceptable fall protection systems.
7 Design calculations and/or product data shall be provided for all components and
8 connections, including off-the-shelf fence connections, demonstrating design
9 requirements are met. For fall protection features that are exposed to the public,
10 design of railings shall be in accordance with Chapter 13 of the *AASHTO LRFD*
11 *Bridge Design Specifications*. All fall protection exposed to the public shall be a
12 minimum 54 inches in height, measured from the top of finished roadway,
13 sidewalk, or platform.

14 The Design-Builder shall design and install all subsurface transit facility and BRT
15 Station elements including foundation elements, anchors, conduit, junction boxes,
16 sign attachments, and drainage. The Work shall be coordinated with local transit
17 authorities and meet the requirements in Section 2.27, *Transit*; Appendix S; and
18 this Section.

- 19 • All station elements shall be clearly laid out, detailed, and dimensioned
20 in the structure design submittals to be locatable and installed in the
21 future.
- 22 • Rebar clear zones shall be provided where future post-installed anchors
23 are required. Clear zones shall be clearly defined and dimensioned in the
24 structure design submittals to be locatable in the future.
- 25 • Utilities shall be concealed within the structures and penetrations
26 through the bridge deck and structure shall be fitted with waterstop,
27 gasket, or similar to ensure no passage of water.
- 28 • Conduits and drain pipes shall be capped with removable mechanical
29 pipe plugs. Plugs shall be ABS plastic fitted with neoprene or rubber
30 gasket capable of withstanding 5 psi. Conduit and drainpipes shall be
31 left long protruding at least 2-feet above finish surface.
- 32 • All subsurface transit facility and station elements shall be protected and
33 concealed beneath secured plywood covers that are marked with high
34 visibility orange paint. The transit facility and station areas containing
35 protruding subsurface station elements shall be completely cordoned off
36 to prevent access with 4-feet high temporary chain link construction
37 fence. Fencing shall be situated to maintain a minimum 6-feet wide
38 public access past the areas.

39 **2.13.4.1 Bridge Design Criteria**

40 The following permanent bridge superstructure types are permitted for this Project:

- 41 • Prestressed concrete I Girders
- 42 • Prestressed concrete wide flange I Girders

- Spliced prestressed concrete girders
- Prestressed concrete tub girders
- Prestressed concrete wide flange thin deck girders (subject to limitations stipulated in the WSDOT *Bridge Design Manual*)
- Steel-plate girders
- Steel-box girders
- Post-tensioned concrete box girders
- Prestressed concrete slab girders for pedestrian bridges only

The Design-Builder shall not use steel trusses, rolled steel beams, prestressed concrete deck bulb-tee girders, tri-beam sections, and double tee girders for permanent bridge structures. Masonry or timber shall not be used as materials for permanent bridge superstructures or substructures.

For vehicular bridges, a minimum of three girder lines, with the exception of two girder lines for tub girders, shall be used to provide redundant load paths.

Intermediate hinges shall not be used with permanent bridge structures.

Non-redundant, fracture critical pier caps shall not be used.

2.13.4.1.1 *Bridge Seismic Design Criteria*

The seismic analyses and design for all new permanent bridge elements shall be in accordance with the *AASHTO Guide Specifications for LRFD Seismic Bridge Design*, as modified by the WSDOT *Bridge Design Manual*, and the code-based response spectra and coefficients applicable to this Project as defined in Section 2.6, *Geotechnical*, and the WSDOT *Geotechnical Design Manual*.

All new, widened, modified, and seismic retrofitted bridges carrying I-405 mainline and ramps to and from I-405 mainline shall have an operational classification of Recovery as defined in the WSDOT *Bridge Design Manual*. All other bridges shall have an operation classification of Ordinary. Where the WSDOT *Geotechnical Design Manual* identifies structures as Normal or Essential, they shall be treated as Ordinary or Recovery, respectively, in accordance with the classifications in the WSDOT *Bridge Design Manual*.

The seismic design of Recovery level bridges includes bridge approach slabs and walls or other structures supporting bridge elements. Following a Functional Evaluation Earthquake (FEE) event, seismic settlements of bridge elements, approach slabs and structures supporting bridge elements shall not exceed the post construction settlement limits in Section 2.6, *Geotechnical*.

2.13.4.1.1.1 *Liquefaction and Lateral Spread*

All new and widened bridges shall be designed for the effects of liquefaction and lateral spreading in accordance with the requirements of the WSDOT *Bridge Design Manual*, WSDOT *Geotechnical Design Manual*, and Section 2.6, *Geotechnical*. Where the structural design cannot accommodate effects from

1 liquefaction or lateral spreading or meet settlement requirements, the
2 Design-Builder shall provide mitigation of liquefiable soils.

3 **2.13.4.1.2 Bridge Widening Design Criteria**

4 The Work on bridges to be widened shall be in accordance with the WSDOT
5 *Bridge Design Manual* and shall include the following analysis and retrofit
6 criteria:

- 7 • Determination of minor and major modifications and widening projects
8 as defined in the WSDOT *Bridge Design Manual*.
- 9 • Determination of strength Capacity to Demand (C/D) ratios for the
10 existing and modified structure and determination of displacement C/D
11 ratios for the existing and modified structure (such as deck slab, girders,
12 crossbeams, columns, and footings) using the pushover method of
13 analysis. A summary table of C/D ratios for all elements shall be
14 provided for each structure.
- 15 • Elements of the existing structure with C/D ratios made worse by the
16 Work or less than 1.0 shall be retrofitted to restore their C/D ratios to the
17 greater of preconstruction values or 1.0. The Design Builder shall submit
18 analysis and calculations evaluating the C/D ratios for all structural
19 elements during all stages of Work to WSDOT for Review and
20 Comment.
- 21 • Analysis and quantification of the seismic demand effects due to
22 differential settlement, and liquefaction/lateral spreading.
- 23 • Analysis for seismic demand effects shall be separate from settlement
24 due to liquefaction.

25 For Bridge No. 405/103E, the Work shall include the following seismic retrofit
26 measures at a minimum:

- 27 • Provide infill shear walls between each column.
- 28 • Provide steel column jackets on each column as required.
- 29 • Provide crossbeam strengthening with bolsters at the intermediate piers
30 as required.
- 31 • Provide full width transverse girder stops between each girder at each
32 girder support.
- 33 • Provide seat extensions at the intermediate piers and abutments as
34 required to meet seat length requirements.
- 35 • Provide foundation strengthening below top of existing footings to resist
36 seismic inertial demands. Existing shallow spread footings at the
37 intermediate piers shall be made continuous to form a catenary or deep
38 beam across the pier.
- 39 • Ground improvements for liquefaction mitigation of the existing
40 structure can be deferred to the Bridge Seismic Retrofit Program.

1 For all other bridges to be widened, the Work shall include the following seismic
2 retrofit measures at a minimum:

3 • Provide steel column jackets on each column or infill shear walls.
4 • Provide crossbeam strengthening with bolsters at the intermediate piers
5 as required.
6 • Provide full width transverse girder stops between each girder at each
7 girder support.
8 • Provide seat extensions at the intermediate piers and abutments as
9 required to meet seat length requirements.
10 • Provide foundation strengthening below the top of existing footings for
11 Recovery level bridges.

12 All new structural elements required to retrofit existing structures shall be
13 designed for HL-93 live load.

14 Foundations for widening of Bridge 405/103E shall use drilled shafts. They shall
15 be designed to impose no load or deformation on the South Fork Perry Creek
16 culvert and be a minimum of 8 feet clear of the culvert.

17 Seismic improvements of Ordinary bridge foundation elements below the top of
18 the existing footing can be deferred to the Bridge Seismic Retrofit Program.

19 Hold points shall be provided upon exposing bridge foundation elements below
20 bottom of spread footing and pile or shaft caps, and before the start of any bridge
21 seismic retrofit work.

22 **2.13.4.1.3 Load Rating Report**

23 All new bridges, widened bridges, modified bridges, rehabilitated bridges, seismic
24 retrofit bridges, and detour bridges that carry vehicular loads and are 20 feet or
25 more in span length (measured from back-to-back of pavement seats along the
26 centerline of the roadway) shall be load rated in accordance with the WSDOT
27 *Bridge Design Manual*. Detour bridges, for the purpose of load rating, are defined
28 as bridges that will be in place for more than 90 Calendar Days. The
29 Design-Builder will not be required to retrofit the existing structures for a
30 reduction in the load rating due to existing bridge overlay replacements, removal
31 and replacement of traffic barriers, or both. However, the Design-Builder shall be
32 required to retrofit the existing structures where load rating factors fall below 1.0
33 as a result of all other Work.

34 **2.13.4.1.4 Precast Prestressed Concrete Girders**

35 Precast prestressed concrete girders include both pre-tensioned and post-tensioned
36 girders.

37 The Design-Builder shall provide continuity reinforcement at intermediate piers
38 in the bridge deck to resist negative moments due to live load and superimposed
39 dead loads. Prestressed concrete girders shall be designed as simple span for all
40 single span and multi-span bridges.

1 **2.13.4.1.5 Steel Plate Girders and Steel Box Girders**

2 The main longitudinal load-carrying girders shall be cambered during fabrication.
3 Heat cambered rolled girders shall not be used except as secondary members or
4 temporary girders. Steel superstructures shall have a cast-in-place reinforced
5 concrete bridge deck designed to be composite for live loads.

6 Drip plates shall be provided on the bottom flanges on the exterior side of the
7 exterior steel plate girders to direct water runoff away from bearings and bridge
8 seats.

9 Structural steel shall be painted in accordance with Section 6-07 of the Standard
10 Specifications.

11 **2.13.4.1.6 Bridge Foundations**

12 The Design-Builder shall construct bridge abutments, wingwalls, and curtain
13 walls with precast or cast-in-place reinforced concrete. Where structural earth
14 walls adjoin bridge abutments or curtain walls, the joint shall be a single vertical
15 joint full height to the bottom of the traffic barrier. Curtain walls at bridge
16 abutment wall corners shall be cast-in-place walls integral with the abutment
17 walls and extending at least to the back of the footings. All girder seats at
18 abutments and pier caps shall be sloped transverse to the abutment or pier cap to
19 drain moisture accumulation.

20 The Design-Builder shall use wingwalls, curtain walls, and retaining walls as
21 required by slope geometry and under-bridge clearances. These walls shall
22 prevent soil slopes from spilling onto girders and bearings. End slopes shall meet
23 stability requirements defined in Section 2.6, *Geotechnical* and the WSDOT
24 *Geotechnical Design Manual* and shall be no steeper than 1.5H:1V.

25 **2.13.4.1.7 Bridge Decks and Expansion Joints**

26 The Design-Builder shall design and construct all vehicular bridge decks using
27 cast-in-place reinforced concrete or stay-in-place concrete deck panels in
28 accordance with Section 15.5.5 of the WSDOT *Bridge Design Manual*. The
29 bridge deck protection system for vehicular bridges, including bridge widenings,
30 shall be in accordance with Section 15.5.5.D of the WSDOT *Bridge Design*
31 *Manual*. Widened bridges with original concrete decks that do not meet a Type 1
32 Protection System, shall have a Type 1 Protection System on the new deck and
33 shall have a Type 2 Protection System with a 1.5-inch concrete overlay on the
34 existing deck, in accordance with Section 5.7.4B of the WSDOT *Bridge Design*
35 *Manual*. Bituminous or bituminous-with-membrane overlays for permanent
36 bridge deck construction on new vehicular bridges shall not be used.

37 Bridge deck texturing shall be in the longitudinal direction, except for bridge
38 widenings, where the bridge concrete texturing shall match the existing bridge
39 deck concrete finish adjacent to the widening.

40 The bridge deck for widened structures shall be continuous between expansion
41 joints and shall match the existing expansion joint locations. Expansion joint

1 headers shall be re-built the entire width of the new and existing bridge deck.
2 Strip seals and compression seals and any associated armoring or anchorages shall
3 be removed and replaced with new seals, in one continuous piece, for the entire
4 width of the new and existing bridge deck.

5 The Design-Builder shall not use steel finger expansion joints on new bridges. All
6 expansion joints shall be watertight. Longitudinal expansion joints shall not be
7 used on new bridges or widened bridges. The maximum skew for expansion joints
8 on new bridges shall be 30 degrees as measured perpendicular to the centerline of
9 the bridge deck. Longitudinal joints in overlays on existing bridges needed for
10 construction staging shall be placed along permanent lane lines.

11 In addition to Hold Points in Section 2.28, *Quality Management Plan*, a Hold
12 Point shall be provided upon completion of existing header concrete removal and
13 prior to placement of new header concrete for expansion joint replacement.

14 **2.13.4.1.8 *Slope Protection***

15 Slope protection shall reduce or eliminate the need for maintenance; lessen or
16 eliminate negative visual impacts associated with soil erosion, weed growth, trash
17 accumulation, and vandalism; and conform to the requirements described in the
18 WSDOT *Bridge Design Manual*; Section 2.15, *Roadside Restoration*; and
19 Appendix L. At a minimum, the Design-Builder shall provide concrete slope
20 protection on slopes beneath new and widened bridges in accordance with
21 Section 2.8 of the WSDOT *Bridge Design Manual* and Standard Plan A-30.10-00.
22 Concrete slope protection shall be placed the full width of the bridge.

23 **2.13.4.1.9 *Bridge Barriers and Railings***

24 All new bridge and structure traffic barriers and railings shall be designed in
25 accordance with the WSDOT *Bridge Design Manual*. The minimum Test Level
26 design criteria shall be set as TL-4, except where pedestrian barrier is required
27 shall be set as TL-3. Existing bridge barriers requiring modification shall be
28 replaced by removing the existing barrier to the next joint.

29 Unless stated otherwise in the RFP, bridges with pedestrian or bicycle access shall
30 have: 1) 32-inch high pedestrian barriers with pedestrian context sensitive
31 solutions (CSS) railing adjacent to sidewalks, BRT Platforms, or raised
32 rockscapes, or 2) 42-inch high single-slope barrier with pedestrian CSS railing
33 elsewhere. Barriers and pedestrian railings shall also meet the requirements of
34 Appendices L, and Section 2.15, *Roadside Restoration*.

35 Pedestrian CSS railing shall be designed in accordance with Appendices L,
36 Sections 15.10.5 and 10.5.1 of the WSDOT *Bridge Design Manual*, and meet the
37 strength and detailing requirements of Bridge Railing Type BP. The aesthetic
38 requirements of Section 2.15, *Roadside Restoration*, shall not adversely affect the
39 strength, extreme, and service limit states and safety requirements for traffic
40 barriers and railings.

41 At a minimum, the following criteria shall also be met:

- 1 • New pedestrian bridge at Brickyard BRT Station shall have 32-inch
2 height pedestrian barrier, curvilinear CSS railing with throw fence, and
3 canopy structure, in accordance with Appendix L and Appendix S. The
4 throw fence shall be 7.5 feet above walking surface.
- 5 • On Bridge No. 522/28N, the existing precast median barrier shall be
6 replaced with new permanent 42-inch cast-in-place single slope barrier
7 with rectilinear CSS railing.
- 8 • The existing metal pipe rail on the south side of Bridge No. 522/28N
9 shall be removed and replaced with a rectilinear CSS railing. All
10 existing anchors shall be removed to provide 1.5-inch clear cover and
11 repaired in accordance with Section 6-01.16(2) of the Standard
12 Specifications. Groups of closely spaced anchors shall be repaired as one
13 continuous repair.
- 14 • New 42-inch height barrier shall be provided as a part of the required
15 reconstruction of Bridge No. 405/70E, due to removal of Bridge No.
16 522/30E-N. The outside face barrier treatment shall be fractured fin to
17 match the existing.
- 18 • New pedestrian bridge at the SR 527 BRT Station shall have 36-inch
19 height pedestrian barrier, curvilinear CSS railing with throw fence, and
20 canopy structure to match the existing bridge (405/104P), in accordance
21 with Appendix L and the Transit Facilities Architectural and Urban
22 Design Criteria (Appendix S). The throw fence shall be 7.5 feet
23 minimum above walking surface.
- 24 • The SR 527 BRT Station shall have 32-inch height pedestrian barrier
25 along the transit platforms and 42-inch height single sloped barrier
26 elsewhere, in accordance Section 2.31, *Vertical Construction*.
27 Temporary fall protection railing shall be installed to provide a
28 minimum combined height of 42-inch. Pedestrian railing shall meet the
29 requirements in this Section.
- 30 • The 17th Avenue SE direct access bridge over northbound I-405 at
31 SR 527 BRT Station and approach shall have 42-inch single slope
32 barrier with pedestrian CSS railings, in accordance with Appendix L and
33 Appendix S.

34 Transitions between barrier types and height shall be provided in accordance with
35 this Section and Appendix L. Transitions shall be gradual and provide a seamless
36 appearance.

37 The Design-Builder shall not use precast concrete barriers for permanent
38 applications on bridges or bridge approach slabs. Permanent barriers shall be
39 reinforced concrete cast-in-place in the final position.

40 The Design-Builder shall cast a minimum of two spare 2-inch-diameter conduit
41 pipes with junction box pairs (one for each conduit pipe) spaced at 180 feet
42 maximum into all new concrete bridge barriers for the full length of the barrier,
43 including barriers on bridge approach slabs and barriers on walls that abut

1 approach slabs or bridges. Each conduit pipe shall terminate at separate Type 1
2 junction boxes within 15 feet of the exit from a barrier. The Design-Builder shall
3 furnish and install conduit expansion, deflection devices, or both at all expansion
4 joints, points where the conduit exits from the barrier and any other location
5 where movement is expected. Additional conduit shall be installed as needed to
6 meet the Project utility requirements. Conduit installed but not utilized for this
7 Project shall be considered spare for future utility needs.

8 **2.13.4.1.10 *Bridge Canopies***

9 Bridge canopies shall meet the requirements in Section 2.31, *Vertical*
10 *Construction*, and the Transit Facilities Architectural and Urban Design Criteria
11 (Appendix S).

12 **2.13.4.1.11 *Bridge-Mounted Utilities***

13 Utility installation requirements on new and existing structures shall be in
14 accordance with Section 2.10, *Utilities and Relocation Agreements*, Appendix L,
15 and Section 15.10 of the WSDOT *Bridge Design Manual*.

16 **2.13.4.1.12 *Temporary Structures***

17 Temporary structures refer to any temporary bridge, detour bridge, portion of a
18 bridge, or buried structure that will not remain upon Physical Completion of the
19 Project. Temporary structures shall accommodate vehicular and pedestrian traffic
20 and meet the following criteria:

21 The Design-Builder shall design temporary structures in accordance with the
22 WSDOT *Bridge Design Manual*, WSDOT *Geotechnical Design Manual*,
23 *AASHTO LRFD Bridge Design Specifications*, and *AASHTO Guide Specifications*
24 for *LRFD Seismic Bridge Design*. Welding on any steel elements shall be in
25 accordance with AWS D1.5. Components of temporary structures that will be
26 incorporated into the permanent structures shall meet the requirements for the
27 permanent structures. All temporary structures shall be designed for live load
28 deflection less than or equal to L/800 as defined by *AASHTO LRFD Bridge*
29 *Design Specifications*. Temporary structures with vehicular traffic shall be
30 designed for minimum 75 percent of the HL-93 live load as defined in the
31 *AASHTO LRFD Bridge Design Specifications*, except when there is no practical
32 detour route available for freight, then 100 percent of the HL-93 live load shall be
33 used.

34 The driving surface of the temporary detour structure shall be durable and skid
35 resistant as defined in Section 10.13 of the WSDOT *Bridge Design Manual*.
36 Temporary traffic barriers shall be in accordance with Section 1610 of the
37 WSDOT *Design Manual* and the WSDOT *Bridge Design Manual*.

38 The Design-Builder may use new and salvaged structure members for the
39 temporary structure, but it shall be the responsibility of the EOR to ensure all
40 members meet all appropriate material properties for their intended function, such
41 as dimensions, yield strength, tensile strength, ductility, toughness, chemical

1 composition, weldability, and corrosion resistance. Material testing of the
2 structure members may be required in order to provide assurance that the
3 appropriate requirements of material properties have been met. For salvaged steel
4 materials where the grade of steel cannot be positively identified, the design
5 stresses for the steel shall conform to Section 6-02.3(17)B3 of the Standard
6 Specifications. Salvaged structure members include previously used members
7 from other bridges or structures, members that have been fabricated but never
8 installed in a structure, and members from a prefabricated structural system
9 designed specifically for repeated temporary use. Concrete girder design sheets
10 shall be provided indicating concrete strength, strand type and pattern, shear
11 reinforcement, and other pertinent information. The Design-Builder shall provide
12 supporting documentation for all selected temporary members to the WSDOT
13 Engineer for Review and Comment.

14 All foundations of the temporary structures shall be located outside the horizontal
15 limits of the Ordinary High Water for the Sammamish River, Par Creek, North
16 Fork Perry Creek, North Creek, Stream 25.0L, Juanita Creek, Queensborough
17 Creek under I-405, and Queensborough Creek under SR 527, and the bottom of
18 foundations shall be located a minimum of 2 feet below scour estimated for the
19 2-year MRI water flows. Before Substantial Completion of the Project, the
20 foundations for temporary structures shall be completely removed.

21 Design Plans and specifications for all temporary detour structures shall be
22 reviewed and approved by the SLE. Prior to opening to traffic, all temporary
23 detour structures shall be reviewed in the field for compliance with the Plans and
24 specifications by the SLE, who shall advise WSDOT of any deviations. The
25 Design-Builder shall be responsible for the maintenance and removal of all
26 temporary structures. Temporary structures shall be removed in accordance with
27 2-02.3(2) of the Standard Specifications.

28 **2.13.4.1.13 *Bridge Security***

29 Bridges shall be designed for security in accordance with the WSDOT *Bridge*
30 *Design Manual* and shall employ both the natural surveillance and territorial
31 reinforcement strategy and the hard armoring strategy.

32 Alcove spaces and ledges within abutment-superstructure interfaces shall be
33 omitted or completely sealed off between girders above the abutment seat to the
34 deck soffit with bridge security fencing in accordance with Section 15.2.11 of the
35 WSDOT *Bridge Design Manual*.

36 Abutments supported by mechanically stabilized earth walls (commonly referred
37 to as perched abutments) and bent-type abutments shall include concrete
38 enclosing fascia walls that extend to the bottom of the superstructure and infill
39 between girders from bottom of girder to deck soffit. The design shall minimize
40 any gaps in the enclosing fascia, such as those needed to allow bridge movements.
41 Bridge security fencing, meeting the requirements of Section 15.2.11 of the
42 WSDOT *Bridge Design Manual*, may be used to infill between girders above the

1 concrete enclosures in lieu. Inspection access and ventilation shall be provided
2 and meet the requirements of WSDOT *Bridge Design Manual* 7.5.1.A.4.

3 Concrete enclosing fascia and bridge security fencing shall be designed in
4 accordance with AASHTO *LRFD Bridge Construction Specifications* and the
5 loads specified in Article 13.8.2 of that standard. The retaining wall and concrete
6 enclosing fascia shall incorporate the aesthetic treatments for abutment walls in
7 accordance with the *I-405, Brickyard to SR 527 Project Urban Design Criteria*
8 (Appendix L).

9 The new NB I-405 over Sammamish River and SR 522 bridge shall meet the
10 bridge security requirements stated above in this Section and shall also have
11 8-foot tall bridge security chain-link fencing installed to deny access to the area
12 beneath span(s) north of SR 522 to the northern abutment. The bridge security
13 chain-link fencing shall seamlessly interface with the wire mesh with vines on
14 low wall behind the BRT transit stations shown in the *Transit Facilities*
15 *Architectural and Urban Design Criteria* (Appendix S) to deny access. Widened
16 bridges with a clear height of 10-feet or less on any side (measured from the
17 ground line at face of abutment to girder seat) shall have 8-foot tall bridge
18 security chain-link fencing, which shall deny access to spaces between girders at
19 the abutment and areas where the superstructure is less than 10-feet from finished
20 grade. Bridge security chain-link fencing shall terminate at the abutment, beneath
21 the bottom flange of the exterior girders, and shall not extend in front of the
22 exterior girder webs and curtain or wing walls. Bridge security chain link fencing
23 shall be 9-gauge, 0.5-inch mesh, black vinyl-coated chain link fence fabric and
24 shall have a continuous top pipe rail. High-security locking gates shall be
25 provided as required for maintenance and inspection. The fencing shall be
26 designed for the loads specified in Article 13.8.2 of *AASHTO LRFD Bridge*
27 *Design Specifications*.

28 **2.13.4.1.14 *Bridge Seismic Retrofit Design Criteria***

29 Provided the bridges to be retrofit are not widened, the Work shall include seismic
30 analysis and retrofit measures for the elements noted on the following bridges in
31 accordance with Section 4.4 of the *WSDOT Bridge Design Manual*:

32 • Determination of strength C/D ratios for existing and modified
33 structures and determination of displacement C/D ratios for all elements
34 of the existing and modified structures (including crossbeams, columns,
35 and footings) using the pushover method of analysis. A summary table
36 of C/D ratios for all elements shall be provided for each bridge.

37 The Work on Bridge Nos. 405/64, 405/73, and 405/103W shall include the
38 following seismic retrofit measures at a minimum:

39 • For Bridge No. 405/64, provide steel column jackets for the two
40 southern columns at pier 2 (columns built prior to 1980).
41 • For Bridge No. 405/73, provide steel column jackets for the two center
42 columns at Pier 2, 3, and 4 (columns built prior to 1980).

- 1 • For Bridge No. 405/103W, provide steel column jackets for the three
2 western columns at Pier 2 and 3 (columns built prior to 1980).
- 3 • Provide crossbeam strengthening with bolsters at the intermediate piers
4 as required.
- 5 • Provide full width transverse girder stops between each girder at each
6 girder support.
- 7 • Provide seat extensions at the intermediate piers and abutments as
8 required to meet seat length requirements.

9 All new structural elements for the seismic retrofit shall be designed for an HL-93
10 live load. Pedestals at the top of the footings shall be considered part of the
11 columns for retrofit requirements and shall be retrofitted as required.

12 Seismic improvements of the existing foundation elements below the top of the
13 existing footing can be deferred to the Bridge Seismic Retrofit Program.

14 Hold points shall be provided before placement of column jackets, bolsters or
15 girder stops to assess conditions of the structure.

16 **2.13.4.1.15 Bridge No. 405/70E Modification Design Criteria**

17 Removal of Bridge No. 522/30E-N shall be considered a modification of the
18 existing NB I-405 bridge (Bridge No. 405/70E). Analysis of the modified Bridge
19 No. 405/70E shall meet the requirements of a bridge minor widening in
20 accordance with the WSDOT *Bridge Design Manual*. The Design-Builder shall
21 be responsible for determining the limits of removal of Bridge No. 522/30E-N,
22 and elements of the existing structure with C/D ratios made worse by the Work or
23 less than 1.0 shall be retrofitted to restore their C/D ratios to the greater of
24 preconstruction values or 1.0. The Design-Builder shall submit analysis and
25 calculations evaluating the C/D ratios for all structural elements of the existing
26 and modified structure, and a summary table of C/D ratios for all elements shall
27 be provided to WSDOT for Review and Comment.

28 At the location where the existing bridge superstructure will be removed as a part
29 of the Work, the Design-Builder shall provide new concrete fascia to enclose all
30 voids and enclose the end of the box girder along the full width of the bridge, and
31 finish with a Class 2 surface finish and pigmented sealer to match existing.
32 Concrete fascia shall be designed in accordance with AASHTO LRFD *Bridge*
33 *Design Specifications* and the Mandatory Standards. Inspection access and
34 lighting for any box girder cells to remain shall be provided and meet the
35 requirements of WSDOT *Bridge Design Manual* 5.2.6.

36 New cast-in-place concrete barrier shall be installed on the bridge to close gaps
37 left in the barrier from removal of Bridge No. 522/30E-N. New bridge drain inlets
38 and downspouts shall be installed to eliminate any possible ponding that may
39 occur as a result of the modification. Barrier scuppers and freefall of water to the
40 ground below are not allowed.

41 Seismic retrofit of the existing structure below top of columns can be deferred to
42 the Bridge Seismic Retrofit Program.

1 The modified bridge shall be load rated in accordance with this Section.

2 **2.13.4.1.16 *Bridge No. 522/28N Modification Design Criteria***

3 Work on Bridge No. 522/28N shall incorporate aesthetic and landscape
4 requirements of Section 2.15, *Roadside Restoration*, and Appendix L. Bridge
5 analysis shall meet the requirements of a bridge widening in accordance with the
6 *WSDOT Bridge Design Manual*. At a minimum, the Work shall include the
7 following analysis and retrofit criteria.

- 8 • Determination of minor and major modifications and widening projects
9 as defined in the *WSDOT Bridge Design Manual*. The Work may be
10 considered a minor modification and widening provided the net mass
11 increase is equal to or less than 10 percent of the original superstructure,
12 and substructure and foundations are unchanged.
- 13 • Elements of the modified structure with strength and service limit states
14 C/D ratios less than 1.0 shall be retrofitted to restore their C/D ratios to
15 be greater than 1.0. Steel stresses at the applicable services limit states
16 shall also be evaluated and control of cracking by distribution of
17 reinforcement shall be met for a Class 2 exposure condition, in
18 accordance with *AASHTO LRFD Bridge Design Specifications*. Where
19 seismic evaluation is required, determination of displacement C/D ratios
20 for all elements of the modified structures (including crossbeams,
21 columns, and footings) shall be performed using the pushover method of
22 analysis. A summary table of C/D ratios for all elements shall be
23 provided for each structure.
- 24 • The Design Builder shall submit analysis and calculations evaluating the
25 C/D ratios for all structural elements during all stages of Work,
26 including, but not limited to, construction loading, and new hard-scaping
27 placement to WSDOT for Review and Comment. Analysis shall
28 evaluate the short- and long-term effects of added deadloads.

29 The landscaping, hardscaping, pedestrian path, bridge joints and waterproofing
30 system components, shall be designed for HS-20 live load and pedestrian live
31 load full width, barrier-to-barrier, in accordance with *AASHTO Guide*
32 *Specification for Pedestrian Bridges*. Dynamic load allowance need not be
33 considered for HS-20 live load.

34 All new structural elements required to retrofit existing structures shall be
35 designed for HL-93 live load.

36 Seismic improvements of the existing foundation elements below the top of the
37 existing footing can be deferred to the Bridge Seismic Retrofit Program.

38 The bridge shall be load rated in accordance with this Section.

39 A waterproofing assembly shall be provided in accordance with this Section.

40 Hold points as described in Section 2.28, *Quality Management Plan*, shall be
41 provided before the start of any bridge seismic retrofit work.

1 **2.13.4.1.17 Bridge No 405/104P Design Criteria**

2 The existing portion of Bridge 405/104P structure may be left in place and
3 incorporated into the replacement bridge structure provided that elements of the
4 existing structure with C/D ratios made worse by the Work or less than 1.0 are
5 retrofitted as required to restore their C/D ratios to the greater of preconstruction
6 values or 1.0. Seismic analysis and design of the new and existing structure shall
7 be in accordance with this Section.

8 The bridge shall maintain the same superstructure and substructure type as the
9 existing portion and adhere to the requirements in Section 2.15, *Roadside*
10 *Restoration*, and Appendix L. The overall appearance and geometrical dimensions
11 shall be the same as those of the existing structure. Portions of unused structure
12 shall be removed in accordance with the Standard Specifications.

13 **2.13.4.1.18 Bridge Drainage**

14 Where new bridge drain inlets, pipes, and downspouts are installed, they shall be
15 placed to capture stormwater runoff on the bridge and shall meet the requirements
16 in Section 2.14, *Stormwater*; Section 15.10 of the WSDOT *Bridge Design*
17 *Manual*; and the following:

- 18 • Downspout parts shall be accessible for maintenance and cleaning.
- 19 • Drain pipes and drainage accessories shall not be installed within the
20 bridge substructures elements, within box girder cells, within the box
21 girder top flange or deck, or on the exterior (visible) sides of the bridge.
- 22 • Drain pipes and downspouts shall be located in accordance with
23 Appendix L.
- 24 • Pipes and downspouts shall be ductile iron pipe.

25 All new drainage conveyance shall be supported in accordance with the
26 requirements for utilities installed with new construction in Section 15.10 of the
27 WSDOT *Bridge Design Manual*.

28 All new exposed drainage conveyance and associated supports attached to bridges
29 shall be painted in accordance with Section 6-07 of the Standard Specifications
30 and Appendix L.

31 Runoff shall be captured at each end of new and widened bridges. Approach
32 drains shall be placed at each end of bridges to prevent stormwater from running
33 onto the structure and where surface drainage is modified resulting in stormwater
34 running onto the structure.

35 Refer to Section 2.31, *Vertical Construction*, for additional design criteria.

36 **2.13.4.1.19 Waterproofing Assembly for Bridge No. 522/28N**

37 The Design-Builder shall design, furnish and install a complete vertical and
38 horizontal waterproofing assembly below all hardscaping and landscaping
39 features on the existing Bridge No. 522/28N. The waterproofing assembly shall
40 be continuous and extend full width barrier-to-barrier, over bridge joints, and

1 beyond each bridge approach slab, to provide a complete lateral conveyance
2 system with positive drainage that discharges all subsurface flows off the bridge
3 deck. The waterproofing assembly shall include, but not be limited to, surface
4 conditioner, monolithic waterproofing membrane, prefabricated drainage mat,
5 drainage course, filter fabric, separation layers and related cant strips, metal
6 flashing and bridge expansion joint seals. The waterproofing membrane shall be a
7 hot, fluid applied, self-healing, rubberized asphalt membrane. Base course and fill
8 beneath hardscaping shall be closed-cell expanded polystyrene geofoam. Normal
9 weight aggregate base course or soil shall not be used.

10 All waterproofing assembly components shall be obtained as a single-source from
11 the membrane manufacturer to ensure total system compatibility, function, and
12 integrity. Upon completion of the Work, the Design-Builder shall supply to the
13 owner with a single-source 15-year total system warranty of United States origin
14 direct from the manufacturer.

15 Penetrations through the waterproofing assembly shall not be allowed. However,
16 foundations for illumination and sign poles may be attached directly to the
17 existing bridge deck, and the waterproofing membrane and flashing/reinforcing
18 shall extend up the sides of the element pursuant to the waterproofing
19 manufacturer's recommendations and to ensure depth of subsurface water does
20 not exceed the vertical height of the protection.

21 The prefabricated drainage mat and drainage course shall be sized to provide full
22 lateral conveyance of all surface flows. The drainage mat and drainage course
23 shall have sufficient compressive strength to support all overburden, including but
24 not limited to hardscaping dead loads, pedestrian loads, HS-20 vehicular loads,
25 and all other surface elements over the mat. Calculations and product
26 documentation shall be provided for WSDOT Review and Comment.

27 Positive drainage shall be provided as flow transitions from the waterproof
28 assembly to a conveyance system at the outside edges of all structures or retaining
29 type elements. At these locations, the top of the conveyance system shall be
30 located below the bottom of the prefabricated drainage mat. Clean-outs,
31 accessible from the bridge deck, shall be provided at the inlet to each conveyance
32 system. Backwater conditions resulting from this transition is prohibited.

33 The Design-Builder shall perform chain drag testing, ASTM D4580, Method B,
34 across the entire bridge deck and approaches. Areas of spalling, delamination,
35 unsound concrete, and rebar deterioration shall be documented in a Chain Drag
36 Report (Appendix J) and submitted to WSDOT for Review and Comment at least
37 14 Calendar Days prior to installation of the waterproofing assembly. A Hold
38 Point shall be provided prior to any further deck preparation and repair. The
39 WSDOT Engineer shall approve the areas of the existing bridge deck requiring
40 further deck preparation.

41 The Design-Builder shall include in their bid an area of further deck preparation
42 equal to 25 percent of the area of the bridge deck. If WSDOT determines that the
43 quantity of further deck preparation exceeds this area, additional compensation
44 will be made in accordance with Section 1-04 of the *General Special Provisions*.

1 In addition to Hold Points in Section 2.28, *Quality Management Plan*, a Hold
2 Point shall be provided upon completion of the repairs and prior to placement of
3 the waterproofing assembly. A Hold Point shall be provided prior to placement of
4 hardscaping elements on the bridge.

5 See Section 2.14, *Stormwater*, for additional conveyance requirements.

6 **2.13.4.1.20 *Existing Bridge and Wall Demolition***

7 During all stages of demolition, existing structures (or portions of structures as
8 applicable) shall remain stable and shall be removed in a controlled fashion that
9 does not damage surrounding existing structures, roadways or utilities. The
10 Design Builder shall submit structural stability analysis to support the selected
11 demolition sequence.

12 Bridge and wall demolition plans and procedures, including falsework plans, shall
13 be submitted to WSDOT for Review and Comment as Type 3E Working
14 Drawings, and be prepared in accordance with the Standard Specifications and
15 this Section.

16 Falsework and shoring used for demolition shall be designed in accordance with
17 the requirements for falsework in the Standard Specifications.

18 **2.13.4.1.21 *Barges, Flexi-Floats, and Crane Mats***

19 If barges, including flexi-floats, crane mats, and similar, are used to transport
20 construction materials or demolitions debris, temporarily store and stockpile
21 materials, or temporarily store or transport liquid or sediment removed during the
22 Work, the work surface of the barge deck shall include containment to prevent
23 any discharges into the Sammamish River. No rubblization, processing of
24 material, or breaking down of any existing bridge or structural materials shall be
25 allowed on vessel, barge, flexi-float, crane mats, or other Design Builder
26 equipment used over existing waterways.

27 Barges shall not be allowed to ground-out during in-water construction. Barges
28 and other floating equipment shall be operated so that there is a minimal
29 suspension of sediments. Barges and walkways between barges shall be cleaned
30 as necessary and kept free of material with the potential to enter waters of the
31 State.

32 Should the Design-Builder choose to moor barges outside of the Project Limits,
33 the Design-Builder shall obtain all necessary concurrence or approvals, or both, to
34 do so in writing from the authority(ies) having jurisdiction. The Design-Builder
35 shall provide copies of all such concurrences and approvals to WSDOT prior to
36 mooring barges in the areas(s).

37 The use of barges shall be done in accordance with the requirements outlined in
38 the applicable environmental permits, and the United States Coast Guard bridge
39 permit.

40 For permit requirements and commitments list, see Appendix P and Appendix C.

1 **2.13.4.1.22 Navigation Channel Requirements**

2 At the Sammamish River, the Design-Builder shall maintain a minimum
3 navigation opening at all times during and after construction, as dictated by the
4 United States Coast Guard Bridge Permit.

5 For permit requirements and commitments list, see Appendix P and Appendix C.

6 **2.13.4.2 At-Grade Traffic Barriers**

7 Refer to Section 2.11, *Roadway*, for design criteria regarding barrier type and
8 height.

9 At-grade traffic barriers shall be designed in accordance with the WSDOT *Bridge*
10 *Design Manual* and shall use the design criteria for TL-4, at a minimum. Existing
11 barriers that require modification shall be replaced by removing the existing
12 barrier to the next joint.

13 Where changes to the roadway beneath or adjacent to existing bridges results in
14 abutments or piers located within the clear zone, as defined by the WSDOT
15 *Design Manual* and *AASHTO Roadside Design Guide*, collision shall be
16 addressed by either providing structural resistance or by redirecting or absorbing
17 the collision load in accordance with Section 3.16.7 of the WSDOT *Bridge*
18 *Design Manual*.

19 Traffic barriers with a grade difference greater than the Standard Plans shall meet
20 requirements for both barriers and retaining walls, including slope stability, wall
21 drainage, and horizontal bench requirements, in accordance with this Section;
22 Section 2.6, *Geotechnical*; and the Mandatory Standards.

23 Traffic barriers along the eastern edge of northbound I-405 between MP 22.35
24 and 22.55 in the vicinity of the Brickyard BRT Station along the existing noise
25 walls shall stand at least 2 feet clear of the existing noise walls, measured from
26 back of barrier to face of existing noise wall. Where an offset of 4 feet or less is
27 provided between the back of barrier and existing noise wall, the barrier shall be
28 designed to transfer no collision load to the existing noise wall and its
29 foundations. The barrier shall also be designed as a non-yielding retaining
30 structure that restores the resistance at the existing noise wall foundation. The
31 Design-Builder shall design the barrier and retaining structure for no deflection
32 and at-rest earth pressures, as described in Section 15-4.8 of the WSDOT
33 *Geotechnical Design Manual*.

34 **2.13.4.3 Retaining Wall Design Criteria**

35 The Design-Builder shall design and construct permanent retaining walls for the
36 Project. Retaining walls shall be of the following types:

37 • Proprietary structural earth walls in accordance with Section 6-13 of the
38 Standard Specifications.

- Standard permanent geosynthetic retaining walls in accordance with Sections D-3.09, D-3.10, and D-3.11 of the Standard Plans and Section 6-14 of the Standard Specifications.
- Standard reinforced concrete cantilevered retaining walls in accordance with Sections D-10.10 through D-10.45 of the Standard Plans and Section 6-11 of the Standard Specifications.
- Soil nail walls in accordance with Section 6-15 of the Standard Specifications.
- Soldier pile walls in accordance with Sections 6-16 and 6-17 of the Standard Specifications.
- Soldier pile tieback walls in accordance with Sections 6-16 and 6-17 of the Standard Specifications.
- Secant pile and tangent pile walls in accordance with Section 6-19 of the Standard Specifications

Rock walls, block walls, masonry walls, permanent shotcrete and gabion cribbing shall not be used for retaining earth or as retaining walls.

The Design-Builder shall design walls in accordance with Section 2.6, *Geotechnical*; the WSDOT *Geotechnical Design Manual*; the WSDOT *Bridge Design Manual*; and the AASHTO *LRFD Bridge Design Specifications*. The Design-Builder may modify the Standard Plan retaining walls to meet Project requirements, such as seismic design criteria and aesthetic requirements per Section 2.15, *Roadside Restoration*, by providing special design analysis. Aesthetic modifications shall not adversely affect the strength and safety requirements of the retaining walls. Special design retaining walls shall be stamped and signed by the EOR. Wall drainage, including cement concrete gutters, shall be provided for all walls in accordance with the WSDOT *Geotechnical Design Manual* and the WSDOT *Bridge Design Manual*.

The Design-Builder shall evaluate potential impacts to Utilities and other facilities (stormwater pipe, Intelligent Transportation System [ITS] conduit, etc.) crossing under proposed walls and bridges and incorporate mitigation measures to avoid conflicts and detrimental effects including, but not limited to, settlement and surcharge loading.

Walls supporting Recovery level bridges and bridge structure elements, including approach slabs, shall remain at full-service level as defined by the bridge seismic design criteria in this Section and the WSDOT *Bridge Design Manual*. They shall also meet the serviceability requirements in Chapter 15-4.7 of the WSDOT *Geotechnical Design Manual* and the post construction settlement limits in Section 2.6, *Geotechnical*, under the Functional Evaluation Earthquake (FEE) event.

2.13.4.3.1 *Retaining Walls Beneath Existing Bridges and Structures*

During all stages of temporary and permanent retaining wall and shoring construction under existing bridges, structural elements shall not be overstressed

1 with a C/D ratio of less than 1.0, or less than the C/D ratio of the existing
2 structure. Design and construction staging shall be based on three-dimensional
3 deformation-based analysis that provides predicted displacements of the structure
4 during each stage of construction. The Design-Builder shall submit to WSDOT
5 for Review and Comment structural and geotechnical analysis and calculations
6 demonstrating existing structural elements are not overstressed during all stages
7 of the Work. The analysis and calculations shall be submitted as a structure design
8 submittal together with the design of the retaining wall or shoring. At a minimum,
9 the analysis shall investigate the following:

10 • Deformations in all bridge structure and foundation elements caused by
11 the Work at all stages.
12 • Short-term, long-term, and total and differential settlement and lateral
13 movements.
14 • Any potential impacts to the bridge structure as a result of the Work.
15 • Geotechnical analysis required in Section 2.6, *Geotechnical*.

16 All structure design submittals for retaining walls beneath existing bridges shall
17 include detailed plans, elevations, and section layouts of all existing and new
18 structure elements identifying clearances and areas of potential conflicts. The
19 Design-Builder shall submit Type 3E Working drawings detailing specific
20 procedures for retaining wall and shoring installation and remedies for potential
21 conflicts.

22 A pre-activity meeting with WSDOT and the Design-Builder shall be held at least
23 14 Calendar Days prior to beginning any temporary or permanent retaining wall
24 Work under bridges. The conference will be used to discuss construction
25 procedures, personnel and equipment to be used.

26 In addition to the Hold Points required in Section 2.28, *Quality Management*
27 *Plan*, the following shall be provided:

28 • Prior to excavating below bottom of spread footing, or pile or shaft caps
29 and within a zone sloping away from bottom of footing or cap.
30 • Upon exposing any foundation elements below bottom of spread
31 footings or footing caps.
32 • Prior to placing any shotcrete facing.

33 **2.13.4.3.2 *Temporary Retaining Walls***

34 Temporary retaining wall refers to any wall, portion of wall, or shoring that
35 retains earth adjacent to public vehicular traffic and will not remain functional
36 upon Physical Completion of the Project.

37 The Design-Builder may reuse structural components of temporary retaining
38 walls as part of permanent retaining wall systems, provided all of the structural
39 support elements and materials of the temporary retaining walls are in as-new
40 condition and meet the requirements of the permanent structure standards. Timber
41 piles will be allowed only as foundations for temporary retaining walls where

1 allowed by the Project's permits. Maintenance of temporary retaining walls shall
2 be the Design-Builder's responsibility.

3 The Design-Builder shall remove all portions of temporary retaining walls before
4 Substantial Completion of the Project.

5 **2.13.4.4 Buried Structures Design Criteria**

6 The Design-Builder shall use only cast-in-place or precast reinforced concrete,
7 metal structural plate, or a composite arches system for buried structures.

8 Buried structures and associated headwalls, wingwalls and connected barriers
9 shall be designed and constructed in accordance with the WSDOT *Geotechnical*
10 *Design Manual*, WSDOT *Bridge Design Manual*, Standard Specifications,
11 *AASHTO LRFD Bridge Design Specifications*, and the *AASHTO LRFD Bridge*
12 *Construction Specifications*. The AASHTO operational classification load
13 modifier for the buried structure shall be that for typical bridges unless noted
14 otherwise.

15 Fall protection on buried structures and associated headwalls, wingwalls and
16 connected barriers shall follow requirements in this Section.

17 Corrosion and abrasion shall be considered as specified in the WSDOT *Bridge*
18 *Design Manual*.

19 The Structural Clear Span of a buried structure shall be used to determine the
20 buried structure class. When supporting a Roadway, the Structural Clear Span
21 shall be the widest horizontal opening from interior face to interior face of the end
22 walls measured parallel to the roadway centerline. When not supporting a
23 Roadway, the Structural Clear Span shall be the widest horizontal opening from
24 interior face to interior face of the end walls measured perpendicular to the buried
25 structure centerline.

Structure Class	Structural Clear Span
Class 1	Less than 20.0 feet
Class 2	20.0 feet and greater

26 Class 2 buried structures shall be considered bridges and satisfy seismic
27 requirements for Ordinary or Recovery operational classifications, as defined in
28 this Section. Class 2 buried structures and associated headwalls and wingwalls
29 shall include seismic design and ground failure mitigation in accordance with the
30 *AASHTO LRFD Road Tunnel Design and Construction Guide Specifications*.
31 Seismic analysis shall include the loading effects resulting from ground shaking
32 and ground failure. This includes, at a minimum, design for the seismic effects of
33 transient racking, ovaling deformations, liquefaction, lateral spreading and lateral
34 flow effects. The *AASHTO LRFD Bridge Design Specifications* exemption from
35 seismic loading shall not apply.

36 Seismic Design need not be considered for Class 1 buried structures. However,
37 wingwalls and headwalls shall meet the seismic design requirements in

1 accordance with the WSDOT *Bridge Design Manual*, WSDOT *Geotechnical*
2 *Design Manual*, and AASHTO *LRFD Bridge Design Specifications*.

3 All buried structures and associated headwalls and wingwalls shall be designed
4 for scour from the design flood (100-year flood event) and the check flood
5 (500-year flood event) in accordance with the WSDOT *Bridge Design Manual*
6 and the AASHTO *LRFD Bridge Design Specifications*. Channel migration shall be
7 considered.

8 Headwalls are structure elements that are end treatments connected to buried
9 structures, including, at a minimum, parapets, slope collars, cutoff walls and
10 inverts. Headwalls shall be reinforced concrete.

11 Wingwalls are retaining wall structure elements adjacent to or above a buried
12 structure end or headwall. Portions of wingwalls below the 100-year mean
13 recurrence interval water surface shall be reinforced concrete or have a reinforced
14 concrete fascia.

15 When supporting a Roadway, the Fill Depth shall be defined as the total backfill
16 and surfacing depth above the top of the buried structure. When not supporting a
17 Roadway, the Fill Depth shall be defined as the total backfill above the top of the
18 buried structure.

19 Structural Earth Wall wingwalls shall not use metallic ground reinforcement
20 below the 100-year mean recurrence interval water surface unless the pH of the
21 water in front of the wall and of the groundwater are within the range of 5.0 and
22 10.0, in accordance with WSDOT Test Method T 417 in the WSDOT *Materials*
23 *Manual*.

24 **2.13.4.4.1 Concrete Structures**

25 When the buried structure is located in a corrosive environment as defined in the
26 WSDOT *Bridge Design Manual*, corrosion-resistant reinforcement as defined in
27 the WSDOT *Bridge Design Manual* shall be used. The minimum cover
28 requirements for direct exposure to salt water and coastal situations of the
29 AASHTO *LRFD Bridge Design Specifications* shall apply.

30 When the Fill Depth of the buried structure is less than 2 feet at any point above
31 the Structure, all reinforcement in the top slab shall be corrosion resistant as
32 defined in the WSDOT *Bridge Design Manual* LRFD M 23-50. Reinforcement in
33 the top slab need not be corrosion-resistant when a concrete deck meeting the
34 requirements for a Type 4 Bridge Deck Protection System as defined in the
35 WSDOT *Bridge Design Manual* is provided.

36 When the top of the buried structure is directly exposed to vehicular traffic (fill
37 depth <2 feet), a concrete overlay or reinforced concrete deck shall be provided.
38 HMA overlay is not allowed. For a reinforced concrete deck, the minimum
39 concrete cover from the top surface of the buried structure to the top mat of
40 reinforcement shall be 2 inches. For a concrete overlay over segmental units, a
41 Type 4 Protection System shall be provided in accordance with the WSDOT

1 *Bridge Design Manual*. When the top of the buried structure is directly exposed to
2 vehicular traffic (fill depth <2 feet), bridge approach slabs shall be provided.
3 All reinforcement in precast units shall be of the same type.

4 **2.13.4.4.2 *Metal Structural Plate Structures***

5 Steel structural plate shall not be used in locations conforming to corrosive
6 environments as defined in the WSDOT *Bridge Design Manual*. Galvanizing and
7 zinc coatings shall not be used below the 100-year MRI water surface.

8 Where the buried structure supports a Roadway and the minimum Fill Depth is
9 less than 8 feet, the Contractor shall provide protection against Roadway de-icing
10 salts and chlorides by one of the following methods:

- 11 1. Providing an impermeable geomembrane with welded seams in the backfill
12 over the Structure that is sloped to drain water away from the Structure. The
13 membrane shall be a minimum 30 mil thick polyvinyl chloride, ethylene
14 interpolymer alloy, or polyurethane polymer, or a combination of these
15 polymers.
- 16 2. Preventing roadway drainage from entering into the fill above the buried
17 structure.
- 18 3. Providing additional metal plate thickness.

19 **2.13.4.4.3 *Composite Arch System***

20 Composite arch systems, also referred to as Composite Arch Bridge System
21 (CAS), shall not be used in locations of high energy streams, where the
22 supporting arches could be vulnerable to impact damage from large rocks, wood
23 or flood debris. Composite arch systems shall not be used in locations that are
24 exposed to significant wildfire hazard.

25 Composite arch systems shall maintain a Fill Depth of at least 3 feet.

26 Composite arches systems shall consist of a two component Superstructure placed
27 on reinforced concrete foundations. The superstructure shall consist of fiber-
28 reinforced polymer (FPR) composite hollow tubes, external reinforcement/stay-
29 in-place forms filled with expansive self-consolidating concrete (ESCC), and
30 supporting custom pultruded corrugated FRP deck panels retaining the structural
31 backfill. The arches shall be supported by concrete foundations (cast-in-place or
32 precast in sections and made continuous), requiring a cast-in-place encasement of
33 the arch ends for anchorage to the foundations.

34 The composite arch system shall be designed in accordance with the *AASHTO*
35 *LRFD Bridge Design Specifications*, the *AASHTO LRFD Guide Specifications for*
36 *Design of Concrete-Filled FRP Tubes for Flexural and Axial Members*, the *ASCE*
37 *Pre-Standard for LRFD of Pultruded FRP Structures*, and other applicable
38 specifications.

39 The composite arch system structural components shall be designed, fabricated,
40 and supplied by a single supplier as a complete system.

1 **2.13.4.4.4 Load Rating Report**

2 For a Class 2 buried structure supporting a Roadway, the Contractor shall submit
3 a load rating report in accordance with the WSDOT *Bridge Design Manual*,
4 except in the following cases:

5 • For a simple span (single barrel) buried structure, when the Structural
6 Clear Span is less than or equal to 24 feet and the minimum Fill Depth is
7 greater than 13 feet.

8 • For a simple span (single barrel) buried structure, when the Structural
9 Clear Span is greater than 24 feet and the minimum Fill Depth exceeds
10 the Structural Clear Span.

11 • For a multiple span (multiple barrel) buried structure, when the Fill
12 Depth exceeds the Structural Clear Span.

13 **2.13.4.5 Stormwater Vaults**

14 New or modified stormwater vaults, vaults where the runoff volume is modified,
15 and open top vaults shall be watertight and shall conform to the requirements for
16 detention vaults in the WSDOT *Bridge Design Manual*. New stormwater vaults
17 shall not be located in the roadway.

18 Stormwater vaults that may carry vehicular loads and that are 20 feet or more in
19 span length (measured from inside face to inside face) shall be load rated in
20 accordance with the WSDOT *Bridge Design Manual*.

21 Refer to Section 2.14, *Stormwater*, for additional design requirements.

22 **2.13.4.6 Noise Wall Design Criteria**

23 Noise walls shall be constructed of precast concrete or cast-in-place concrete.
24 Masonry or block noise walls shall not be used. The Design-Builder may modify
25 the Noise Wall Plans shown in the Standard Plans as required to meet Project-
26 specific criteria by providing special design analysis. The special design noise
27 walls shall be stamped and signed by the EOR. The Design-Builder shall design
28 noise walls for all structural service limit state, strength limit state, extreme limit
29 state, and safety requirements.

30 Noise walls (including doors and vehicular access points) shall be special designs
31 in accordance with Exhibit 740-1 in the WSDOT *Design Manual*.

32 The Design-Builder may use the Standard Plan noise walls as a basis for special
33 design noise walls to meet the aesthetic requirements for the Project in accordance
34 with Section 2.15, *Roadside Restoration*. Aesthetic modifications shall not
35 adversely affect the strength and safety requirements of the Standard Plan noise
36 walls.

37 The Design-Builder may use the Standard Plan noise walls as a basis for special
38 design noise walls to meet the seismic requirements for the Project in accordance
39 with Section 2.6, *Geotechnical*. Structural modifications for seismic demand not

1 covered by the Standard Plans shall meet the strength and safety requirements of
2 all noise wall design codes.

3 Grading at special design noise walls shall conform to the grading for Standard
4 Plan noise walls.

5 The top of the noise walls shall be constructed to meet or exceed the top elevation
6 of the noise walls shown in the Noise Wall Coordinates (Appendix O) with
7 vertical steps and horizontal runs constructed in accordance with Section 2.15,
8 *Roadside Restoration*, and Appendix L. The top of the noise wall shall be a
9 minimum of 6 feet above the final ground line on the community side of the wall,
10 or Right of Way fencing shall also be provided to obtain a combined minimum
11 height of 6 feet above the final ground line.

12 New noise walls on top of retaining walls shall be limited to 14 feet above the top
13 of roadway or finished ground behind the wall.

14 The Design-Builder shall provide fire hydrant access doors adjacent to fire
15 hydrant locations. Doors shall be provided as specified in the Standard Plans and
16 locations shall be easily accessible to both emergency vehicles and water supply
17 service lines. Each access door shall have a deadbolt lock capable of accepting a
18 Best CX Series Core. The Design-Builder shall furnish and install a spring-loaded
19 construction core with each lock. WSDOT will furnish the permanent Best CX
20 Series Core for the Design-Builder to install at the end of the Project. Fire hydrant
21 signs shall be attached to all doors that provide access to fire hydrants.

22 Final alignment tolerances shall be 0.5 inches within any 10-foot length of wall.

23 Refer to Section 2.8, *Environmental* for additional noise wall requirements.

24 **2.13.4.6.1 *Noise Barrier System on Median Barrier***

25 The noise barrier system on top of the median barrier at the Brickyard BRT
26 Station shall meet the requirements of Section 2.31, *Vertical Construction*, and
27 this Section.

28 The noise barrier system, median barrier, and associated foundations shall be a
29 crash-tested system successfully tested to *Manual for Assessing Safety Hardware*
30 (MASH) Test-Level 4 criteria. The system shall also be designed for all limit
31 states in accordance with the Mandatory Standards. The Design-Builder shall
32 submit to WSDOT for Review and Comment a crash-test report and the FHWA
33 Eligibility Letter based on AASHTO MASH criteria. Technical Specification for
34 the system shall be submitted with the Final Design Submittal.

35 **2.13.4.7 *Station Walls and Barriers***

36 Brickyard Station walls and barriers, collectively referred to as Walls, shall
37 include (but not be limited to) all walls and structure elements adjacent to or
38 facing I-405 serving as noise barriers or I-405 partitions; supports for stairs,
39 elevators, canopies, transparent noise panels, and other elements; storage and
40 maintenance spaces; piers supporting the station pedestrian bridge; and traffic
41 barrier. All station Walls with portions located within 4-feet of the front face of

1 barrier shall be designed to meet the requirements of this Section in addition to all
2 other requirements in the Technical Requirements and Mandatory Standards.

3 • The Walls shall be crashworthy to TL-4 test specifications, inclusive of
4 a TL-4 single slope safety shape and 42-inch-high barrier to contain the
5 vehicle. Crashworthy, as defined in AASHTO LRFD, is a system that
6 has been successfully crash-tested to a currently acceptable crash test
7 matrix and test level or one that can be geometrically and structurally
8 evaluated as equal to a crash-tested system. Elements supported on or by
9 the Walls shall not affect their ability to be Crashworthy. Deviation from
10 the requirements in this Section shall require the Walls and barriers be
11 evaluated for crashworthiness and approved as Crashworthy by the
12 WSDOT Engineer.

13 • The Walls and their foundations shall be designed to provide structural
14 resistance elastically against vehicular collisions force (CT) under three
15 (3) AASHTO LRFD Extreme Event II cases defined in the Table 1
16 below. The vehicular collision force (CT) is assumed to act in a
17 direction (ϕ) with the edge of the pavement in a horizontal plane, and at
18 a distance (H) above the ground, whichever produces the critical shear
19 and moment in the Wall and the connection to the foundation. The
20 design vehicular collision force for Extreme II-B and II-C shall be
21 applied in accordance with AASHTO LRFD C3.6.5.1.

22 **Table I – Extreme II Limit State Parameters**

	Extreme II-A	Extreme II-B	Extreme II-C
Vehicular Collision Force, CT	AASHTO LRFD Appendix A13 for TL-4	600 kips	93.3 kips
Direction, ϕ		0 to 15 degrees	0 to 15 degrees
Distance, H		2.0 to 5.0 feet	5.0 to 14.0 feet

23 • The Walls shall be designed to prevent shattering. Two mats of
24 reinforcement with a maximum spacing of 12-inches in each direction
25 shall be provided. Concrete clear cover on the interior face shall not
26 exceed 2-inches and areas of excess concrete cover and unreinforced
27 concrete shall be avoided.

28 • Displacement of the Walls shall be evaluated at the extreme limit states.
29 Elements attached to or supported on the Walls shall be designed to
30 accommodate displacements without failure or damage, such as
31 becoming projectile hazards during a crash. Bus platform shelters,
32 signage, and other independent structures shall be offset 1.5 times the
33 maximum displacement of the Wall under extreme limit states.

34 • Transparent noise panels mounted to the Walls shall be a minimum of
35 14-feet above ground measured from the final pavement surface at the
36 front of the barrier. The transparent noise panel system, including the

1 panels, panel frames, posts, and all hardware shall be a complete system
2 from a crash-tested system that meets the Noise Barrier System on
3 Median Barrier requirements of Section 2.13 and Section 2.31. Rub rails
4 are not required above 14-feet. Attachment and support of the
5 transparent noise panel system to the Walls shall be designed and
6 secured in a way that fragments do not fall when the system is deformed
7 or broken in a design collision.

8 • Wall finishes above the barrier shall be in accordance with Appendix L.
9 The thickest point of the finish shall not extend beyond the top face of
10 barrier.

11 Station Walls with portions located greater than 4-feet from the front face of
12 barrier and within the clear zone, as defined by the AASHTO Roadside Design
13 Guide, shall be protected behind a minimum 42-inch-high MASH crash tested
14 rigid TL-5 barrier. Such rigid barriers shall be structurally and geometrically
15 capable of surviving the crash test for MASH test level 5, as specified in
16 AASHTO LRFD.

17 **2.13.4.8 Illumination, Intelligent Transportation System, Traffic
18 Signal, Toll Gantry, and Overhead Sign Structures**

19 Overhead sign structures include monotube sign structures, bridge mounted signs,
20 monotube sign structures mounted on bridges, and their foundations. Overhead
21 sign structures may support static signs, variable message signs (VMS), toll rate
22 signs (TRS), or Toll Equipment (Toll Gantry).

23 Where light standards, ITS closed-circuit television (CCTV) standards, traffic
24 signal standards (including for ramp meter systems), or overhead sign structures
25 are mounted on bridges, the bridge structural elements shall be designed for the
26 support reactions.

27 Overhead lighting, sign bridges, cantilever sign structures, signal bridges, and
28 overhead cantilever traffic signals mounted on bridges shall be attached either to
29 the bridge substructure elements (e.g., crossbeam extensions) or to the bridge
30 superstructure at piers locations.

31 The Design-Builder shall design retaining walls and foundations to account for
32 the placement of any illumination, ITS, traffic signal (including ramp meter), Toll
33 Gantry, or overhead sign structure supports on or behind the retaining walls.

34 Handholes in closed members shall have reinforcement around the holes.
35 Structural bolted splices or connections shall use ASTM A 325 high strength
36 bolts. All fabricated structural components and hardware shall be galvanized after
37 fabrication in accordance with AASHTO M 111. All bolts and related hardware
38 shall be galvanized after fabrication per AASHTO M 232, except ASTM F 1554
39 GR 105 Anchor Rods shall be galvanized after fabrication per ASTM F 2329.

40 Overhead monotube sign structures shall be designed in accordance with the
41 design criteria specified in the WSDOT *Bridge Design Manual*. Overhead
42 monotube sign structure designs (including foundations) shall be stamped and

1 signed by the EOR. Span lengths, loadings, and conventional structural design
2 information provided in Chapter 10 of the WSDOT *Bridge Design Manual* shall
3 be design minimums. Where Bridge Design Office conventional sign structure
4 and foundation design requirements, as listed in the WSDOT *Bridge Design*
5 *Manual*, are not met, non-conventional designs shall be designed using *AASHTO*
6 *LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and*
7 *Traffic Signals*, the WSDOT *Bridge Design Manual*, and this Section. The
8 Design-Builder shall prepare and submit detailed structural design calculations
9 and plans to the WSDOT Engineer for Review and Comment.

10 Foundations for illumination, ITS, traffic signal, Toll Gantry, and overhead sign
11 structures shall be designed in accordance with Section 2.6, *Geotechnical* and
12 *WSDOT Bridge Design Manual*.

13 Non-metallic support structures for illumination, ITS, traffic signal, Toll Gantry,
14 or Toll Equipment shall not be used for permanent installations.

15 All attachments and accessories of unused signs, ITS equipment, and tolling
16 equipment mounted to bridge elements shall be removed. Anchor bolts may be
17 left in place with approval from the WSDOT Engineer.

18 Refer to Sections 2.15, *Roadside Restoration*; 2.18, *Intelligent Transportation*
19 *Systems*; 2.19, *Signing*; and 2.26, *Toll Infrastructure*, for additional design and
20 aesthetic requirements.

21 **2.13.4.8.1 *Variable Message Signs***

22 VMS shall be supported on monotube sign bridges or monotube balanced tee
23 cantilever sign structures.

24 The Design-Builder shall furnish and install all VMS. The Design-Builder shall
25 design and construct all associated VMS housings, VMS mounting beams and
26 brackets, maintenance walkways, support structures, and foundations (including
27 all necessary hardware) to install and test VMS.

28 The VMS housing structural framing, face covering, and mounting members shall
29 be designed to withstand a wind velocity of 115 mph and shall otherwise comply
30 with the requirements of the *AASHTO LRFD Specifications for Structural*
31 *Supports for Highway Signs, Luminaires, and Traffic Signals*.

32 Prior to fabrication, the Design-Builder shall prepare and submit detailed
33 structural design calculations and Plans for all associated VMS housings, VMS
34 mounting beams and brackets, maintenance walkways, support structures, and
35 foundations (including all necessary hardware) to WSDOT for Review and
36 Comment.

37 **2.13.4.8.2 *Toll Rate Signs***

38 TRS shall be installed on monotube sign bridge structures, unless noted
39 otherwise. The Design-Builder shall furnish and install all TRS. The
40 Design-Builder shall design and construct all associated TRS sign housings, TRS

1 sign mounting beams and brackets, support structures, and foundations (including
2 all necessary hardware) to install and test TRS.

3 The TRS housing structural framing, face covering, and mounting members shall
4 be designed to withstand a wind velocity of 115 mph and shall otherwise comply
5 with the latest requirements of the *AASHTO LRFD Specifications for Structural*
6 *Supports for Highway Signs, Luminaires, and Traffic Signals*.

7 Prior to fabrication, the Design-Builder shall prepare and submit detailed
8 structural design calculations and Plans for all associated TRS housings, TRS
9 mounting beams and brackets, maintenance walkways, support structures, and
10 foundations (including all necessary hardware) to WSDOT for Review and
11 Comment.

12 **2.13.4.8.3 Closed-Circuit Television**

13 Where pre-approved CCTV support structures are not used, the analysis and
14 design of CCTV camera support structures shall comply with the requirements of
15 the WSDOT *Bridge Design Manual*. Fatigue design shall conform to Section 11
16 of the *AASHTO LRFD Specifications for Structural Supports for Highway Signs,*
17 *Luminaires, and Traffic Signals* using Fatigue Category III.

18 **2.13.4.8.4 Toll Gantry**

19 Toll Gantry shall use monotube sign structures as supports and shall not support
20 any other overhead signs or equipment other than tolling equipment. Toll Gantry
21 shall be designed within the design criteria specified for monotube sign structures
22 in accordance with the WSDOT *Bridge Design Manual*. Limits for span lengths
23 and loadings shall be as shown in the Monotube Sign Structure Plans and notes in
24 the WSDOT *Bridge Design Manual*. All proposed Toll Gantry plan sheets shall
25 include details for the toll reader equipment cabinet and associated conduit, as
26 well as vertical clearances over the center of each lane and shoulder.

27 Toll Gantry analysis and design shall conform to the following additional criteria:

- 28 • Toll Equipment is assumed to have the following properties per tolled
29 lane and per adjacent shoulder, including wiring, attachments, cameras,
30 sensors, and other appurtenances:
 - 31 ○ Weight 1,500 pounds
 - 32 ○ 750 pounds centered over shoulder (where shoulder >6 feet wide)
 - 33 ○ Surface area of 20 square feet
- 34 • Limit the natural vibrational frequency of any element that supports the
35 equipment support frame to less than 150 hertz.
- 36 • Limit displacements of the structure when the wind speed is equal to
37 30 mph, so that:
 - 38 ○ Movement of any point along the structure shall not exceed
39 0.7 inches relative to the position of any other point along the
40 structure, and the maximum displacement of any point shall not
41 exceed 0.7 inches.

1 ○ Rotational displacement of any point shall not exceed 8 milliradians
2 (0.47 degrees) relative to the rotational orientation of that point at
3 rest, in all three rotational axes.
4 ● Limit displacements of the structure when the wind speed is equal to
5 70 mph, so that maximum movement of any point shall not exceed
6 1.4 inches.

7 See Section 2.26, *Toll Infrastructure*, for additional requirements of Toll
8 Gantries.

9 Existing Toll Infrastructure shall be decommissioned and removed in
10 accordance with Section 2.26, *Toll Infrastructure*.

11 **2.13.5 Construction Criteria**

12 Construction equipment exceeding the legal load shall not be operated on
13 structures without WSDOT's written approval. Refer to Section 1-07 of the
14 *General Provisions* for additional requirements.

15 **2.13.5.1 Structure Monitoring Program**

16 All new and existing bridges, retaining walls, and other structures that have the
17 potential to be damaged by the Work shall be considered Sensitive Structures.
18 The Design-Builder shall identify all new and existing structures that are
19 considered Sensitive Structures based on the proposed Work and develop a
20 monitoring program. Sensitive Structures shall also follow the requirements in
21 Section 2.6, *Geotechnical*, for Sensitive Facilities and Structures. Sensitive
22 Structures shall include at a minimum the following:

23 **Existing Bridge Nos.**

- 24 ● 405/70W
- 25 ● 405/70E
- 26 ● 405/70N-E
- 27 ● 405/70N-W
- 28 ● 522/30W-S
- 29 ● 522/30E-N
- 30 ● 405/70S-E
- 31 ● 522/30E-S
- 32 ● 405/103E
- 33 ● 405/103W

34 **Culverts:**

- 35 ● South Fork Perry Creek culvert

36 **Walls**

- 37 ● Existing retaining Wall 2185L-A at Juanita Creek Fish Passage Structure

1 • Existing MSE wall at Queensborough Creek at SR 527 Fish Passage
2 Structure

3 The monitoring program shall be used to assess the stability and safety of the
4 structure for public use by comparing baseline measurements to routine
5 monitoring measurements after commencement of construction activities within
6 the Project limits. The monitoring program and associated analysis shall be
7 submitted to the WSDOT Engineer for Review and Comment with the Final
8 Design Submittal of the structure or adjacent Work.

9 The monitoring program shall include the following elements for a pre-
10 construction condition survey and routine monitoring of the structure:

11 **Pre-construction Condition Survey:** There shall be two baseline Structure
12 surveys. The first survey shall be performed at least 14 Calendar Days prior to
13 commencement of any construction activities (soil/rock removal, pile driving,
14 structural Work, etc.) for the Work within the greater of the zone of influence or
15 50 feet of the structure. The second survey shall be performed 24 hours prior to
16 starting the construction activities in order to verify stability of the baseline
17 measurements. Both surveys shall document visible cracks, defects, and any
18 unusual conditions. Baseline measurements shall include estimated effects due to
19 temperature, traffic impacts, etc. on the displacement measurements. The first
20 survey shall include installation of survey targets on the structure to track
21 permanent displacements.

22 • Bridge Surveys shall be performed on all spans and piers of the bridge
23 and shall provide a geometric baseline for the bridge deck and the
24 location and elevation of bridge piers. At a minimum, survey targets
25 shall be located on each column of interior piers, within 2 feet vertical
26 distance below the top of each column, and within 2 feet vertical
27 distance above the existing ground line or top of exposed footing. At
28 bridge abutments, survey targets shall be located directly below the
29 centerline of each exterior girder and spaced no greater than 25 feet
30 apart along the abutment wall length and within 2 feet of the top of wall.
31 • Retaining Wall Surveys shall be performed at the wall ends and intervals
32 no greater than 50 feet along the wall length. Survey targets shall be
33 located within 2 feet of the top of wall.
34 • Culvert Surveys shall be performed along its length beneath work-zones
35 and excavations.

36 **Routine Monitoring:** Monitoring of the survey targets on the structure shall start
37 within 24 hours after commencement of any construction activities, then continue
38 at least each Calendar Day until the structure is no longer in service to the public,
39 vehicular and pedestrian traffic is shifted to the temporary detour alignment, and
40 construction activities adjacent to the structure that impact the stability are
41 completed. Monitoring shall include surveying the target locations (x, y, and z
42 values) a minimum of once per Calendar Day and uploading the survey data the
43 same day to an online database. Access to the online database shall be provided to
44 WSDOT up to Substantial Completion of the Project. Surveys shall monitor

1 existing visible cracks, defects, and any unusual conditions identified in the
2 preconstruction condition survey and document any new conditions found.

3 The Design-Builder shall define the trigger, maximum, and repair displacement
4 threshold levels based on their design and structural analysis. The values
5 determined define the threshold levels to implement additional monitoring
6 requirements and adjust construction practices as required. The Design-Builder
7 may adjust the threshold levels depending on the results of the Pre-construction
8 Condition Survey. The Design-Builder shall define threshold levels 24 hours prior
9 to starting construction activities. Threshold levels are compared to the resultant
10 combination of vertical and horizontal displacements of the survey targets.
11 Displacement measurements shall be taken to a precision of 0.01 feet.

12 Damaged, missing, or non-functioning survey equipment or targets shall be
13 replaced and re-baselined within 24 hours. The Design-Builder shall develop a
14 Corrective Action Plan describing specific actions to be taken if permanent
15 displacements exceed the threshold levels given above. This plan shall be
16 submitted to the WSDOT Engineer for Review and Comment at least 14 Calendar
17 Days prior to any construction activity, as part of the monitoring program.

18 Structural damage to the structure caused by the Design-Builder's construction
19 activities and creating safety concerns for public use on the structure shall be
20 repaired regardless of the measured displacement levels. The Design-Builder shall
21 be responsible for all associated design and repair costs, and implementation of
22 repairs to restore stability and safety to the structure for public use.

23 The monitoring program shall include the following elements:

24

- All elements required in the preconstruction condition survey

25 The Design-Builder shall perform remedial measures for each threshold level as
26 described below:

27

- Trigger Level: Notify the WSDOT Engineer the same Calendar Day that
28 the trigger level has been exceeded. Report displacement measurements
29 to the WSDOT Engineer until it is verified that movement has stopped.
30 Increase frequency of future monitoring for each affected survey target
31 to two readings daily with a minimum of 6 hours between readings, and
32 also monitor the adjacent targets at the same frequency until movements
33 have stabilized. Implement procedures to limit additional movement and
34 protect the affected facility.

35

- Maximum Level: Verify measurements and notify WSDOT immediately
36 if the maximum level has been exceeded. Increase frequency of future
37 monitoring for all survey targets to three readings daily with a minimum
38 of 4 hours between readings. Report displacement measurements to the
39 WSDOT Engineer until it is verified that movement has stopped.
40 WSDOT may suspend associated ground disturbing activities and
41 require the Design-Builder to submit alternative proposals for
42 minimizing further movement. If Work is suspended, the Design-Builder
43 shall obtain approval prior to restarting ground disturbing activities.

1 • Repair Level: All construction activities affecting the structure shall be
2 suspended immediately and WSDOT shall be notified immediately to
3 assess the stability risk and safety of the structure for public use. The
4 Design-Builder, SLE, and WSDOT Engineer shall determine the extent
5 of temporary repairs required for the structure before construction
6 activities are allowed to resume. Structural repairs shall be designed and
7 constructed by the Design-Builder and SLE to restore stability and
8 safety of the structure for public use.

9 **2.13.6 Bridge Maintenance Requirements**

10 **2.13.6.1 Existing Bridge Expansion Joint Rehabilitation**

11 The Design-Builder shall field measure all existing expansion joints requiring
12 replacement. The expansion joint headers and expansion joint materials of the
13 existing bridge expansion joints shall be removed for the full width of the bridge.
14 The expansion joint headers shall be reconstructed with either elastomeric
15 concrete or polyester concrete. Where an expansion joint is installed within the
16 monolithic bridge deck and a separate concrete header is not specifically defined,
17 the header width shall be taken as defined in the WSDOT *Bridge Design Manual*
18 Section 5.5.5 or greater as required to ensure joint durability and performance.
19 The joint shall be replaced with an expansion joint system designed for the gap
20 and motion range of the joint. Strip seals, compression seals, and associated
21 anchorage and armoring shall be removed and replaced with new seals, in one
22 continuous piece, for the entire width of the new and existing bridge deck. New
23 HMA overlay shall not be installed across the expansion joints. Transverse joint
24 seals at the back of pavement seat and end of bridge approach slab shall be
25 constructed in accordance with Standard Plan A-40.20.

26 At Bridge Nos. 405/70E, 405/70W, and 405/70S-E, the existing bolted down
27 panel joints shall be replaced with strip seals using special anchorage per the
28 WSDOT *Bridge Design Manual* 9.1.4.B, and an allowable 4-inch motion range to
29 match existing.

30 Bridge expansion joints shall be designed in accordance with the WSDOT *Bridge*
31 *Design Manual*, and calculations shall be submitted to the WSDOT Engineer for
32 Review and Comment.

33 **2.13.6.2 Bridge Inspection and Maintenance Access**

34 The Design-Builder shall design, detail, and construct all bridge superstructures,
35 joints, and bearings to be accessible for WSDOT inspection and maintenance.
36 Inspection access and ventilation designs for enclosed spaces, such as isolated
37 abutment concrete enclosures or box girders, shall be designed in accordance with
38 the WSDOT *Bridge Design Manual*. Inspection and access plans for enclosed
39 spaces shall be submitted to the WSDOT Engineer for Review and Comment.

40 The Design-Builder shall design, detail, and construct all joints and bearings to be
41 replaceable. All bearing locations shall be designed with jacking points and

1 adequate clearances to facilitate future bearing replacement. Jacking points shall
2 be designed to support 200 percent of the calculated lifting load.

3 All exterior surfaces of superstructures, including bearings and between girders,
4 shall be accessible by an Aspen Aerial A-62 Under Bridge Inspection Truck, a
5 40-foot bucket truck, or a 15-foot ladder. “Accessible” is defined as within arm’s
6 reach of an inspector. Technical details including the flight path for an Aspen
7 Aerial A-62 can be located on the Aspen Aerials website.

8 Pipe railing shall be provided along steel plate girder webs for future maintenance
9 and inspection access and shall be located and detailed in accordance with sheet
10 6.4-A9 of the WSDOT *Bridge Design Manual*.

11 For box girders where permanent access is provided, access doors shall be
12 provided at both ends of the bridge.

13 For steel box girders with permanent access, the Design-Builder shall paint the
14 interior of steel box girders the color white (SAE AMS Standard 595, Color No.
15 17925) and shall provide LED inspection lighting and electrical power. Lighting
16 fixtures, light switches and duplex receptacles shall be located inside the steel box
17 girders in a manner consistent with the WSDOT *Design Manual*.

18 The Design-Builder shall notify WSDOT 30 Calendar Days prior to any new
19 bridge or buried structure being open to traffic, so that WSDOT can schedule an
20 inventory inspection by the WSDOT Bridge Preservation Office.

21 **2.13.6.3 Bridge Deck Overlay Replacements**

22 Bridges that require existing overlay to be replaced shall follow requirements in
23 the WSDOT *Bridge Design Manual* and Standard Specifications. At a minimum,
24 Work shall include the components detailed below.

25 Bridges No. 405/72, 405/103E and 405/103W shall replace existing HMA bridge
26 overlay. At a minimum, Work shall include the following:

- 27 • Full depth removal of existing HMA surfacing on the bridge deck by
28 scraping.
- 29 • Chain Drag Testing, ASTM D4580, Method B, shall be performed
30 across the entire bridge deck and approaches. Areas of spalling,
31 delamination, unsound concrete, and rebar deterioration shall be
32 documented in a WSDOT Chain Drag Report form (Appendix J).
- 33 • Further deck preparation in accordance with the Standard Specifications
- 34 • Placement of waterproofing membrane on exposed concrete deck
- 35 • Placement of new 0.25 feet of HMA overlay

36 If the Design-Builder elects to open the bridge to traffic after the existing bridge
37 deck has been scarified, live traffic will be allowed to drive on the scarified
38 surface for a maximum of 5 Calendar Days before the bridge deck overlay is
39 installed in the exposed section.

1 For grade-controlled structures, a Hold Point shall be provided for verification of
2 final grade profile and/or removal depth.

3 A Hold Point shall be provided for the identification of all bridge deck and
4 approach slab areas requiring further deck preparation and repair. The
5 documentation of the chain drag testing shall identify all locations requiring
6 further deck preparation, areas of exposed or damaged reinforcing, and all
7 patching, spalling, and delamination quantities. The documentation shall be
8 submitted to WSDOT using the WSDOT Chain Drag Report form (Appendix J).
9 A hold point shall be provided prior to any further deck preparation and repair.
10 The WSDOT Engineer shall approve the areas of the existing bridge deck
11 requiring further deck preparation.

12 The Design-Builder shall include in their bid an area of further deck preparation
13 equal to 25 percent of the area of the bridge decks. If WSDOT determines that the
14 quantity of further deck preparation exceeds this area, additional compensation
15 will be made in accordance with Section 1-04 of the *General Provisions*.

16 A Hold Point shall be provided upon completion of the repairs and prior to the
17 placement of the new overlay.

18 All reinforcing steel damaged due to the Design-Builder's operations shall be
19 repaired by the Design-Builder.

20 Where concrete overlay is used to provide rigid side support for expansion joints,
21 following the WSDOT *Bridge Design Manual* Section 15.9.1, such modified
22 concrete overlay headers shall be reinforced.

23 The transverse joint between the new bridge overlay and adjacent pavement shall
24 be sealed full width, in accordance with Standard Plan A40.20-04.

25 **2.13.6.4 Bridge Deck Repair and Sealing**

26 Bridge Nos. 405/70E, 405/70W, and 405/70SE and their approaches shall receive
27 bridge deck repair and bridge deck sealing using high molecular weight
28 methacrylate (HMWM) penetrating sealer. The Design-Builder shall include in
29 their bid an area of bridge deck repair equal to 10 percent of the area of the bridge
30 deck. If the area of bridge deck repair identified by the Design-Builder exceeds
31 10 percent of the bridge deck area, WSDOT will determine, at its discretion,
32 whether more bridge deck area will be approved for repair. Payment for
33 additional Work to repair more than 10 percent of the bridge deck area will be
34 addressed in accordance with Section 1-09 of the *General Provisions*.

35 The bridge deck repair and sealing shall conform to the requirements of Bridge
36 Deck Repair and Sealing Specification (Appendix B). The Design-Builder shall
37 submit a Type 3 Working Drawing containing a Bridge Deck Repair Plan and
38 HMWM Penetrating Sealer System Plan. The Bridge Deck Repair Plan shall
39 include:

40 • Chain Drag Report identifying areas requiring bridge deck repair

- Repair material product data, mix design, and test data in accordance with Standard Specifications
- Detailed procedure and requirements for surface preparation, equipment used, and methods of containment
- Bridge deck repair concrete curing

The HMWM Penetrating Sealer System Plan shall include:

- Product data and material safety data sheets; manufacturer's specifications and installation requirements; samples of the HMWM system
- Schedule of work for each bridge
- Detailed procedure and requirements for surface preparation, equipment used, and methods of containment
- Description of equipment and process for applying HMWM resin
- Description of process to verify application rate
- Description of process to change application rate
- Range of gel time and final cure time for HMWM resin
- Description of equipment for applying and removing excess sand
- Procedure for removing HMWM resin, including equipment
- Storage and handling of HMWM resin components
- Disposal of excess HMWM resin and containers

2.13.7 *Submittals*

2.13.7.1 *Structure Design Submittals*

Project submittals shall include, at a minimum, the required submittals in this Section.

2.13.7.1.1 *Preliminary Design Submittal*

The Design-Builder shall submit to WSDOT for Review and Comment preliminary design drawings on WSDOT standard sheets in accordance with the WSDOT *Bridge Design Manual* Preliminary Plan Checklist for all bridges and structures. The Design-Builder shall submit design calculations and supporting reports for all bridges and structures. The stamp of the EOR shall be applied in accordance with WAC 196-23-020.

2.13.7.1.2 *Final Design Submittal*

The Design-Builder shall submit to WSDOT for Review and Comment final design drawings on WSDOT standard sheets in accordance with the WSDOT *Bridge Design Manual*. The Design-Builder shall submit final Technical Specifications, design calculations, monitoring programs and supporting reports

1 for all bridges and structures. The stamp of the EOR shall be applied in
2 accordance with WAC 196-23-020.

3 **2.13.7.1.3 *Released for Construction Document Submittal***

4 The Design-Builder shall submit Released for Construction (RFC) Documents to
5 WSDOT for all structural Work related to bridge and structures construction,
6 including drawings, Technical Specifications, design calculations, and supporting
7 reports, along with verification that all written review comments for the
8 Preliminary and Final Design Submittals have been resolved. The RFC
9 Documents shall include the stamp and signature of the EOR in accordance with
10 WAC 196-23-020.

11 **2.13.7.1.4 *Design Calculations***

12 The Design-Builder shall submit to WSDOT for Review and Comment complete
13 sets of legible calculations to support all structural engineering designs described
14 in this Section. Complete sets of calculations shall be included with each design
15 review Submittal.

16 All RFC calculations shall include the stamp and signature of the EOR in
17 accordance with WAC 196-23-020.

18 All calculation sets shall include the following:

- 19 • Cover Sheet - The name of the Project, structure name, designer/checker
20 names, date (month, day, and year), and supervisor's name shall be
21 listed. The stamp and signature of the EOR shall also be included.
- 22 • Index Sheets - These shall include an index by subject with the
23 corresponding design calculation sheet numbers.
- 24 • Design Calculations - Design calculation sheets shall be numbered. The
25 calculations shall include design criteria; loadings; structural analysis;
26 results; member capacities; geotechnical calculations; horizontal and
27 vertical settlement calculations; deflection diagrams; long term creep
28 diagrams for horizontal flexural members; and all computer input and
29 output data (reduced to an 8.5 by 11-inch sheet size). In addition, all
30 electronic files of spreadsheets, computer models, analysis, design files
31 of spreadsheets and computer input/output files used to support the
32 design calculations shall be submitted. All structural calculations using
33 spreadsheets or math software shall be checked with representative hand
34 calculations to verify logic, procedure, look-ups, formulas, and
35 calculations. All variables, formulas, and assumptions shall be clearly
36 defined and shall be documented with references. Off-the-shelf,
37 commercially available software will not require a hand calculation
38 validation.

39 **2.13.7.2 *Working Drawings***

1 All Working Drawings shall be submitted to WSDOT, in accordance with
2 Section 1-05.3(5) of the *General Provisions*, and Section 2.28, *Quality*
3 *Management Plan*, unless otherwise noted.

4 **2.13.7.2.1 *Shop Drawings***

5 The Design-Builder shall submit to WSDOT shop drawings for all steel elements,
6 precast concrete elements, post-tensioning reinforcement, bearings, expansion
7 joints, railings, barriers, luminaires, drainage structures, reinforcing steel,
8 waterproofing assemblies and piles/drilled shafts prior to implementing Work
9 based on the shop drawings. The EOR shall review all shop drawings prior to
10 Submittal to WSDOT for Review and Comment as Type 3 or Type 3E Working
11 Drawings. The Design-Builder shall submit the final approved shop drawings
12 prior to Physical Completion as part of the As Built Plans in accordance with this
13 Section. The shop drawings shall include, at a minimum, the following
14 information:

- 15 • Size of member and fasteners
- 16 • Length dimensions
- 17 • Finish, such as galvanizing, anodizing, and painting.
- 18 • Weld size and type and welding procedures
- 19 • Strand or steel reinforcing bar placement
- 20 • Post-tensioning reinforcement tensioning procedure, stress calculations,
21 and elongations
- 22 • Post-tensioning anchorage details
- 23 • Fabrication-reaming, drilling, and assembly procedures
- 24 • Wall penetrations
- 25 • Erection procedures for steel elements
- 26 • Handling and erection procedures for precast concrete elements,
27 including complete details of all temporary supports, bracing, and inserts
28 placed for lifting, assembly, and erection.
- 29 • Material specifications
- 30 • Waterproofing assemblies shop drawings and installation procedures

31 **2.13.7.2.2 *Falsework, Forms, and other Temporary Structures***

32 The Design-Builder shall submit to the WSDOT Engineer for Review and
33 Comment Type 3 or Type 3E Working Drawings with supporting design
34 calculations for falsework, forms, construction work bridges, temporary retaining
35 walls, shoring, temporary bridges, and other temporary structures.

36 The Design-Builder shall submit to WSDOT for Review and Comment as Type 3
37 or 3E Working Drawings procedures and Working Drawings with supporting
38 design calculations for critical construction processes. Critical construction
39 processes include, at a minimum, bridge removal, bridge approach demolition,
40 jacking pits, and excavation and shoring beneath bridges and structures.

1 All Final Design Plans and calculations for the falsework, forms, construction
2 work bridges, temporary retaining walls, temporary bridges, other temporary
3 structures, demolition, erection, and installation shall bear the stamp and signature
4 of a Professional Civil or Structural Engineer.

5 **2.13.7.2.3 Shaft Construction Submittal**

6 The Shaft Construction Submittals shall be submitted to the WSDOT Engineer for
7 Review and Comment as Type 3 or Type 3E Working Drawings.

8 **2.13.7.3 Plan Revisions During Construction**

9 The Design-Builder shall incorporate calculations for revisions made during
10 construction into the design/check calculation file when construction is
11 completed. All revisions to design calculations and RFC plan sheets shall be
12 stamped and signed by the EOR in accordance with WAC 196-23-020 prior to
13 incorporating them into the Project. The SLE shall certify that all revisions to
14 structural calculations and plan sheets are in conformance with the Contract
15 requirements. Whenever new plan sheets are required as part of a Contract
16 revision, the information in the title blocks of these sheets shall be identical to the
17 title blocks of the Contract they are for. Every revision shall be assigned a
18 number. The assigned number shall be located both at the location of the change
19 on the sheet and in the revision block of the plan sheet along with an explanation
20 of the change.

21 **2.13.7.4 Load Rating Report**

22 The Design-Builder shall complete and submit a load rating report as described in
23 Section 15.12 of the WSDOT *Bridge Design Manual* to WSDOT for Review and
24 Comment at least 90 Calendar Days before a structure is opened to vehicular
25 traffic.

26 **2.13.7.5 End of Project Submittals**

27 All Design Documents overseen by the SLE shall be submitted prior to Physical
28 Completion and shall bear the stamp and signature of the SLE except as otherwise
29 required in this Section.

30 **2.13.7.5.1 Plans**

31 The Design-Builder shall prepare As Built Plans for bridges and structures on
32 WSDOT standard sheets in accordance with the WSDOT *Bridge Design Manual*.
33 Plans shall be submitted on 11 by 17-inch PDF and as electronic CADD files in
34 accordance with Section 2.1, *General Information* and this Section. Final
35 approved shop drawings for structures shall be included in the As Built Plans.

36 **2.13.7.5.2 Calculations**

37 The Design-Builder shall revise all calculations as necessary for the design
38 covered by the scope of Work to accommodate field changes. The calculations

1 shall include all the items listed under “Design Calculations” previously specified
2 in this Section.

3 **2.13.7.6 Cost Reporting for Permanent Noise Barrier**

4 The Design-Builder shall submit a report documenting the actual construction
5 costs for all permanent noise barriers constructed as part of the Contract. The
6 report shall be submitted no later than 60 Calendar Days after completion of all
7 permanent noise barriers. For each noise barrier constructed, the report shall
8 include the following information:

9 Barrier Description:

- 10 • Region
- 11 • City or County
- 12 • Interstate
- 13 • Begin/End MP Direction
- 14 • Contract Number
- 15 • Barrier Material
- 16 • Barrier Type (1, 2-retrofit, or State legislative funded noise protection)
- 17 • Year of Construction
- 18 • Length (ft.)
- 19 • Height (ft.)
- 20 • Total s.f.
- 21 • Cost

22 The report shall include final As Built Plans for the noise barriers, including plan,
23 profile, and typical section views.

24 The cost reported shall include all expenditures for the Work directly associated
25 with the construction of the noise barriers including, but not limited to, clearing,
26 grading, temporary and permanent fencing, and landscaping required solely for
27 the noise barrier construction, foundations, fabrication and installation, including
28 all costs for Working Drawing preparation and review. For all Work described
29 above, the cost reported shall include direct and indirect costs. Direct costs
30 include, at a minimum, labor, equipment, materials, supervision, and field
31 engineering. Indirect costs include, at a minimum, overhead, profit, bonds, taxes,
32 and insurance.

33 **2.13.7.7 Miscellaneous Submittals**

34 This Section is intentionally omitted.

35 **End of Section**